Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Original language | English (US) |
---|---|
Article number | 1655 |
Journal | Life |
Volume | 13 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2023 |
Externally published | Yes |
Keywords
- Alzheimer’s disease
- excitability
- hippocampus
- neurodegeneration
- pharmacology
- plasticity
- voltage-gated sodium channels
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- General Biochemistry, Genetics and Molecular Biology
- Space and Planetary Science
- Palaeontology