TY - JOUR
T1 - Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons
AU - Laezza, Fernanda
AU - Dingledine, Raymond
PY - 2004/12
Y1 - 2004/12
N2 - High-frequency stimulation of pyramidal cell inputs to developing (P9-12) hippocampal stratum radiatum intemeurons expressing GluR2-lacking, Ca 2+-permeable AMPA receptors produces long-term depression of synaptic transmission, if N-methyl-D-aspartate (NMDA) receptors are blocked. Here we show that these same synapses display a remarkably versatile signal integration if postsynaptic NMDA receptors are activated. At synapses expressing GluR2-deficient AMPA receptors, tetanic stimulation that activates NMDA receptors triggered long-term potentiation or depression (LTP or LTD) depending on membrane potential. LTP was elicited at most synapses when the interneuron was held at -30 mV during the stimulus train but was typically prevented by postsynaptic hyperpolarization to -70 mV, by strong depolarization to 0 mV, by D-2-amino-5-phosphonovaleric acid, or by postsynaptic injection of the Ca 2+ chelator bis-(o-arninophenoxy)-N,N,N′,N′-tetraacetic acid. At synapses with predominantly GluR2-containing AMPA receptors, repetitive stimulation did not change synaptic strength regardless of whether NMDA receptors were activated. The interactions among GluR2 expression, NMDA receptor expression, and membrane potential thus confer on hippocampal interneurons a distinctive means for differential decoding of high-frequency inputs, resulting in enhanced or depressed transmission depending on the functional state of the interneuron.
AB - High-frequency stimulation of pyramidal cell inputs to developing (P9-12) hippocampal stratum radiatum intemeurons expressing GluR2-lacking, Ca 2+-permeable AMPA receptors produces long-term depression of synaptic transmission, if N-methyl-D-aspartate (NMDA) receptors are blocked. Here we show that these same synapses display a remarkably versatile signal integration if postsynaptic NMDA receptors are activated. At synapses expressing GluR2-deficient AMPA receptors, tetanic stimulation that activates NMDA receptors triggered long-term potentiation or depression (LTP or LTD) depending on membrane potential. LTP was elicited at most synapses when the interneuron was held at -30 mV during the stimulus train but was typically prevented by postsynaptic hyperpolarization to -70 mV, by strong depolarization to 0 mV, by D-2-amino-5-phosphonovaleric acid, or by postsynaptic injection of the Ca 2+ chelator bis-(o-arninophenoxy)-N,N,N′,N′-tetraacetic acid. At synapses with predominantly GluR2-containing AMPA receptors, repetitive stimulation did not change synaptic strength regardless of whether NMDA receptors were activated. The interactions among GluR2 expression, NMDA receptor expression, and membrane potential thus confer on hippocampal interneurons a distinctive means for differential decoding of high-frequency inputs, resulting in enhanced or depressed transmission depending on the functional state of the interneuron.
UR - http://www.scopus.com/inward/record.url?scp=8644260773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=8644260773&partnerID=8YFLogxK
U2 - 10.1152/jn.00425.2004
DO - 10.1152/jn.00425.2004
M3 - Article
C2 - 15331617
AN - SCOPUS:8644260773
SN - 0022-3077
VL - 92
SP - 3575
EP - 3581
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 6
ER -