Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis

Wenli Yang, Fan Xia, Fang Mei, Shuizhen Shi, William G. Robichaux, Wei Lin, Wenbo Zhang, Hua Liu, Xiaodong Cheng

Research output: Contribution to journalArticlepeer-review


PURPOSE. The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. METHODS. Mouse models of retinal ischemia–reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. RESULTS. Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. CONCLUSIONS. Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.

Original languageEnglish (US)
JournalInvestigative Ophthalmology and Visual Science
Issue number11
StatePublished - Aug 2023


  • cyclic AMP
  • diabetic retinopathy
  • exchange protein directly activated by cAMP (Epac)1
  • mitochondrial fission
  • pericyte

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis'. Together they form a unique fingerprint.

Cite this