TY - JOUR
T1 - Type I IFN Signaling Is Essential for Preventing IFN-γ Hyperproduction and Subsequent Deterioration of Antibacterial Immunity during Postinfluenza Pneumococcal Infection
AU - Palani, Sunil
AU - Bansal, Shruti
AU - Verma, Atul K.
AU - Bauer, Christopher
AU - Shao, Shengjun
AU - Uddin, Md Bashir
AU - Sun, Keer
N1 - Publisher Copyright:
© 2022 by TheAmericanAssociation of Immunologists, Inc.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Postinfluenza bacterial pneumonia is a significant cause of hospitalization and death in humans. The mechanisms underlying this viral and bacterial synergy remain incompletely understood. Recent evidence indicates that influenza-induced IFNs, particularly type I IFN (IFN-I) and IFN-γ, suppress antibacterial defenses. In this study, we have investigated the relative importance and interplay of IFN-I and IFN-γ pathways in influenza-induced susceptibility to Streptococcus pneumoniae infection. Using genedeficient mouse models, as well as in vivo blocking Abs, we show that both IFN-I and IFN-γ signaling pathways contribute to the initial suppression of antibacterial immunity; however, IFN-γ plays a dominant role in the disease deterioration, in association with increased TNF-α production and alveolar macrophage (AM) depletion. We have previously shown that IFN-γ impairs AM antibacterial function and thereby acute bacterial clearance. The findings in this study indicate that IFN-γ signaling also impairs AM viability and αβ T cell recruitment during the progression of influenza/S. pneumoniae coinfection. Macrophages insensitive to IFN-γ mice express a dominant-negative mutant IFN-γR in mononuclear phagocytes. Interestingly, macrophages insensitive to IFN-γ mice exhibited significantly improved recovery and survival from coinfection, despite delayed bacterial clearance. Importantly, we demonstrate that IFN-I receptor signaling is essential for preventing IFN-γ hyperproduction and animal death during the progression of postinfluenza pneumococcal pneumonia.
AB - Postinfluenza bacterial pneumonia is a significant cause of hospitalization and death in humans. The mechanisms underlying this viral and bacterial synergy remain incompletely understood. Recent evidence indicates that influenza-induced IFNs, particularly type I IFN (IFN-I) and IFN-γ, suppress antibacterial defenses. In this study, we have investigated the relative importance and interplay of IFN-I and IFN-γ pathways in influenza-induced susceptibility to Streptococcus pneumoniae infection. Using genedeficient mouse models, as well as in vivo blocking Abs, we show that both IFN-I and IFN-γ signaling pathways contribute to the initial suppression of antibacterial immunity; however, IFN-γ plays a dominant role in the disease deterioration, in association with increased TNF-α production and alveolar macrophage (AM) depletion. We have previously shown that IFN-γ impairs AM antibacterial function and thereby acute bacterial clearance. The findings in this study indicate that IFN-γ signaling also impairs AM viability and αβ T cell recruitment during the progression of influenza/S. pneumoniae coinfection. Macrophages insensitive to IFN-γ mice express a dominant-negative mutant IFN-γR in mononuclear phagocytes. Interestingly, macrophages insensitive to IFN-γ mice exhibited significantly improved recovery and survival from coinfection, despite delayed bacterial clearance. Importantly, we demonstrate that IFN-I receptor signaling is essential for preventing IFN-γ hyperproduction and animal death during the progression of postinfluenza pneumococcal pneumonia.
UR - http://www.scopus.com/inward/record.url?scp=85133214945&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133214945&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.2101135
DO - 10.4049/jimmunol.2101135
M3 - Article
C2 - 35705254
AN - SCOPUS:85133214945
SN - 0022-1767
VL - 209
SP - 128
EP - 135
JO - Journal of Immunology
JF - Journal of Immunology
IS - 1
ER -