Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype

K. S.M. Reed, V. Ulici, C. Kim, S. Chubinskaya, R. F. Loeser, D. H. Phanstiel

Research output: Contribution to journalArticlepeer-review

Abstract

Objective: Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. Design: Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 h. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. Results: FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (P < 0.00001) or downregulated (P < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-κB, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. Conclusions: FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.

Original languageEnglish (US)
Pages (from-to)235-247
Number of pages13
JournalOsteoarthritis and Cartilage
Volume29
Issue number2
DOIs
StatePublished - Feb 2021
Externally publishedYes

Keywords

  • Cartilage
  • Chondrocytes
  • Fibronectin
  • Osteoarthritis
  • RNA-seq

ASJC Scopus subject areas

  • Rheumatology
  • Biomedical Engineering
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype'. Together they form a unique fingerprint.

Cite this