Abstract
We present structural models for three different amyloid fibril polymorphs prepared from amylin20-29 (sequence SNNFGAILSS) and amyloid-β25-35 (Aβ25-35) (sequence GSNKGAIIGLM) peptides. These models are based on the amide C=O bond and Ramachandran ψ-dihedral angle data from Raman spectroscopy, which were used as structural constraints to guide molecular dynamics (MD) simulations. The resulting structural models indicate that the basic structural motif of amylin20-29 and Aβ25-35 fibrils is extended β-strands. Our data indicate that amylin20-29 forms both antiparallel and parallel β-sheet fibril polymorphs, while Aβ25-35 forms a parallel β-sheet fibril structure. Overall, our work lays the foundation for using Raman spectroscopy in conjunction with MD simulations to determine detailed molecular-level structural models of amyloid fibrils in a manner that complements gold-standard techniques, such as solid-state nuclear magnetic resonance and cryogenic electron microscopy.
Original language | English (US) |
---|---|
Article number | 225101 |
Journal | Journal of Chemical Physics |
Volume | 159 |
Issue number | 22 |
DOIs | |
State | Published - Dec 14 2023 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry