TY - JOUR
T1 - Topoisomerase IIα in chromosome instability and personalized cancer therapy
AU - Chen, T.
AU - Sun, Y.
AU - Ji, P.
AU - Kopetz, S.
AU - Zhang, W.
N1 - Publisher Copyright:
© 2015 Macmillan Publishers Limited.
PY - 2015/7/30
Y1 - 2015/7/30
N2 - Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may have a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors has been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
AB - Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may have a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors has been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=84938500108&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938500108&partnerID=8YFLogxK
U2 - 10.1038/onc.2014.332
DO - 10.1038/onc.2014.332
M3 - Review article
C2 - 25328138
AN - SCOPUS:84938500108
SN - 0950-9232
VL - 34
SP - 4019
EP - 4031
JO - Oncogene
JF - Oncogene
IS - 31
ER -