The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever

K. H.Kathleen H. Rubins, Lisa E. Hensley, Victoria Wahl-Jensen, Kathleen M. Daddario DiCaprio, Howard A. Young, Douglas S. Reed, Peter B. Jahrling, Patrick O. Brown, David A. Relman, Thomas W. Geisbert

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

Background: Infection with Ebola virus (EBOV) causes a fulminant and often fatal hemorrhagic fever. In order to improve our understanding of EBOV pathogenesis and EBOV-host interactions, we examined the molecular features of EBOV infection in vivo. Results: Using high-density cDNA microarrays, we analyzed genome-wide host expression patterns in sequential blood samples from nonhuman primates infected with EBOV. The temporal program of gene expression was strikingly similar between animals. Of particular interest were features of the data that reflect the interferon response, cytokine signaling, and apoptosis. Transcript levels for tumor necrosis factor-α converting enzyme (TACE)/α-disintegrin and metalloproteinase (ADAM)-17 increased during days 4 to 6 after infection. In addition, the serum concentration of cleaved Ebola glycoprotein (GP2 delta) was elevated in late-stage EBOV infected animals. Of note, we were able to detect changes in gene expression of more than 300 genes before symptoms appeared. Conclusion: These results provide the first genome-wide ex vivo analysis of the host response to systemic filovirus infection and disease. These data may elucidate mechanisms of viral pathogenesis and host defense, and may suggest targets for diagnostic and therapeutic development.

Original languageEnglish (US)
Article numberR174
JournalGenome Biology
Volume8
Issue number8
DOIs
StatePublished - 2007
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Cell Biology

Fingerprint

Dive into the research topics of 'The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever'. Together they form a unique fingerprint.

Cite this