TY - JOUR
T1 - The temporal and spatial profiles of cell loss following experimental spinal cord injury
T2 - Effect of antioxidant therapy on cell death and functional recovery
AU - Ling, Xiang
AU - Bao, Feng
AU - Qian, Hao
AU - Liu, Danxia
N1 - Funding Information:
The authors thank the National Institute of Neurological Disorders and Stroke of the National Institutes of Health for financial support (NINDS RO1 NS 44324 and NINDS RO1 NS 35119 to D. Liu), as well as Jing Wen for participating in the experiment of ELISA, Lokanatha Valluru for participating in the experiment to test MnTBAP protection against cell death, and Sarah Toombs Smith for editorial assistance during manuscript preparation.
PY - 2013/11/18
Y1 - 2013/11/18
N2 - Background: Traumatic spinal cord injury (SCI)-induced overproduction of endogenous deleterious substances triggers secondary cell death to spread damage beyond the initial injury site. Substantial experimental evidence supports reactive species (RS) as important mediators of secondary cell death after SCI. This study established quantitative temporal and spatial profiles of cell loss, characterized apoptosis, and evaluated the effectiveness of a broad spectrum RS scavenger - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) and a combination of MnTBAP plus nitro-L-arginine to prevent cell loss and neurological dysfunction following contusion SCI to the rat spinal cord.Results: By counting the number of surviving cells in spinal cord sections removed at 1, 6, 12, 24, 48, 72 h and 1 week post-SCI and at 0 - 4 mm from the epicenter, the temporal and spatial profiles of motoneuron and glia loss were established. Motoneurons continued to disappear over a week and the losses decreased with increasing distance from the epicenter. Significant glia loss peaked at 24 to 48 h post-SCI, but only at sections 0-1.5 mm from the epicenter. Apoptosis of neurons, motoneurons and astrocytes was characterized morphologically by double immuno-staining with cell-specific markers and apoptosis indicators and confirmed by transmission electron microscopy. DNA laddering, ELISA quantitation and caspase-3 activation in the spinal cord tissue indicated more intense DNA fragments and greater caspase-3 activation in the epicenter than at 1 and 2 cm away from the epicenter or the sham-operated sections. Intraperitoneal treatment with MnTBAP + nitro-L-arginine significantly reduced motoneuron and cell loss and apoptosis in the gray and white matter compared with the vehicle-treated group. MnTBAP alone significantly reduced the number of apoptotic cells and improved functional recovery as evaluated by three behavioral tests.Conclusions: Our temporal and spatial profiles of cell loss provide data bases for determining the time and location for pharmacological intervention. Our demonstration that apoptosis follows SCI and that MnTBAP alone or MnTBAP + nitro-L-arginine significantly reduces apoptosis correlates SCI-induced apoptosis with RS overproduction. MnTBAP significantly improved functional recovery, which strongly supports the important role of antioxidant therapy in treating SCI and the candidacy of MnTBAP for such treatment.
AB - Background: Traumatic spinal cord injury (SCI)-induced overproduction of endogenous deleterious substances triggers secondary cell death to spread damage beyond the initial injury site. Substantial experimental evidence supports reactive species (RS) as important mediators of secondary cell death after SCI. This study established quantitative temporal and spatial profiles of cell loss, characterized apoptosis, and evaluated the effectiveness of a broad spectrum RS scavenger - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) and a combination of MnTBAP plus nitro-L-arginine to prevent cell loss and neurological dysfunction following contusion SCI to the rat spinal cord.Results: By counting the number of surviving cells in spinal cord sections removed at 1, 6, 12, 24, 48, 72 h and 1 week post-SCI and at 0 - 4 mm from the epicenter, the temporal and spatial profiles of motoneuron and glia loss were established. Motoneurons continued to disappear over a week and the losses decreased with increasing distance from the epicenter. Significant glia loss peaked at 24 to 48 h post-SCI, but only at sections 0-1.5 mm from the epicenter. Apoptosis of neurons, motoneurons and astrocytes was characterized morphologically by double immuno-staining with cell-specific markers and apoptosis indicators and confirmed by transmission electron microscopy. DNA laddering, ELISA quantitation and caspase-3 activation in the spinal cord tissue indicated more intense DNA fragments and greater caspase-3 activation in the epicenter than at 1 and 2 cm away from the epicenter or the sham-operated sections. Intraperitoneal treatment with MnTBAP + nitro-L-arginine significantly reduced motoneuron and cell loss and apoptosis in the gray and white matter compared with the vehicle-treated group. MnTBAP alone significantly reduced the number of apoptotic cells and improved functional recovery as evaluated by three behavioral tests.Conclusions: Our temporal and spatial profiles of cell loss provide data bases for determining the time and location for pharmacological intervention. Our demonstration that apoptosis follows SCI and that MnTBAP alone or MnTBAP + nitro-L-arginine significantly reduces apoptosis correlates SCI-induced apoptosis with RS overproduction. MnTBAP significantly improved functional recovery, which strongly supports the important role of antioxidant therapy in treating SCI and the candidacy of MnTBAP for such treatment.
KW - Antioxidant therapy
KW - Apoptotic cell death
KW - Behavioral test
KW - Mn (III) tetrakis (4-benzoic acid) porphyrin
KW - Nitro-L-arginine
KW - Secondary spinal cord injury
UR - http://www.scopus.com/inward/record.url?scp=84887687794&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887687794&partnerID=8YFLogxK
U2 - 10.1186/1471-2202-14-146
DO - 10.1186/1471-2202-14-146
M3 - Article
C2 - 24238557
AN - SCOPUS:84887687794
SN - 1471-2202
VL - 14
JO - BMC Neuroscience
JF - BMC Neuroscience
M1 - 146
ER -