TY - JOUR
T1 - The synergism of n-hexane-induced neurotoxicity by methyl isobutyl ketone following subchronic (90 days) inhalation in hens
T2 - Induction of hepatic microsomal cytochrome P-450
AU - Abou-Donia, Mohamed B.
AU - Lapadula, Daniel M.
AU - Campbell, Gerald
AU - Timmons, Phillip R.
N1 - Funding Information:
The supply of technical methyl isobutyl ketone by Eastman Kodak Company, Kingsport, Tenn., is acknowledged. The authors thank Mrs. Erna S. Daniel for her secretarial assistance in the preparation of this manuscript. This study was supported in part by NIEHS Grant 0800823.
Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 1985/10
Y1 - 1985/10
N2 - The effect of methyl isobutyl ketone (MiBK) on n-hexane-induced neurotoxicity was investigated via inhalation in seven groups of five hens each for 90 days followed by a 30-day observation period. One group was exposed to vapors containing 1000 ppm n-hexane and another group to vapors having 1000 ppm MiBK. Four groups were exposed simultaneously to 1000 ppm of n-hexane and 100, 250, 500, or 1000 ppm MiBK. Another group was exposed similarly to ambient air in an exposure chamber and used as a control. Hens continuously exposed to 1000 ppm MiBK developed leg weakness with subsequent recovery, while inhalation of the same concentration of n-hexane produced mild ataxia. Hens exposed to mixtures of n-hexane and MiBK developed clinical signs of neurotoxicity, the severity of which depended on the MiBK concentration. Thus, all hens exposed to 1000 ppm n-hexane in combination with 250, 500, or 1000 ppm MiBK progressed to paralysis. Hens continuously exposed to 1000 100 n-hexane/MiBK showed severe ataxia which did not change during the observation period. The neurologic dysfunction in hens exposed simultaneously to n-hexane and MiBK was accompanied by large swollen axons and degeneration of the axon and myelin of the spinal cord and peripheral nerves. The results indicate that the nonneurotoxic chemical MiBK synergized the neurotoxic action of the weak neurotoxicant n-hexane since the coneurotoxicity coefficient for joint exposure was more than two times the additive effect of each treatment alone. In another experiment, to investigate the mechanism of MiBK synergism of n-hexane neurotoxicity, continuous inhalation for 50 days of 1000 ppm n-hexane had no effect on hen hepatic microsomal enzymes, whereas inhalation of 1000 ppm MiBK for 50 days or a mixture of 1000 ppm of each of n-hexane and MiBK for 30 days significantly induced aniline hydroxylase activity and cytochrome P-450 contents in hen liver microsomes. Liver microsomal proteins from these hens and from hens treated with β-naphthoflavone (β-NF) and phenobarbital (PB) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. While β-NF increased the 55-kDa band (1408%), PB, MiBK, and MiBK/n-hexane increased the protein band (49 kDa) (258, 335, and 253%, respectively), indicating that MiBK induces chicken hepatic cytochrome P-450. The results suggest that the synergistic action of MiBK on n-hexane neurotoxicity may be related to its ability to induce liver microsomal cytochrome P-450, resulting in increased metabolic activation of n-hexane to more potent neurotoxic metabolites.
AB - The effect of methyl isobutyl ketone (MiBK) on n-hexane-induced neurotoxicity was investigated via inhalation in seven groups of five hens each for 90 days followed by a 30-day observation period. One group was exposed to vapors containing 1000 ppm n-hexane and another group to vapors having 1000 ppm MiBK. Four groups were exposed simultaneously to 1000 ppm of n-hexane and 100, 250, 500, or 1000 ppm MiBK. Another group was exposed similarly to ambient air in an exposure chamber and used as a control. Hens continuously exposed to 1000 ppm MiBK developed leg weakness with subsequent recovery, while inhalation of the same concentration of n-hexane produced mild ataxia. Hens exposed to mixtures of n-hexane and MiBK developed clinical signs of neurotoxicity, the severity of which depended on the MiBK concentration. Thus, all hens exposed to 1000 ppm n-hexane in combination with 250, 500, or 1000 ppm MiBK progressed to paralysis. Hens continuously exposed to 1000 100 n-hexane/MiBK showed severe ataxia which did not change during the observation period. The neurologic dysfunction in hens exposed simultaneously to n-hexane and MiBK was accompanied by large swollen axons and degeneration of the axon and myelin of the spinal cord and peripheral nerves. The results indicate that the nonneurotoxic chemical MiBK synergized the neurotoxic action of the weak neurotoxicant n-hexane since the coneurotoxicity coefficient for joint exposure was more than two times the additive effect of each treatment alone. In another experiment, to investigate the mechanism of MiBK synergism of n-hexane neurotoxicity, continuous inhalation for 50 days of 1000 ppm n-hexane had no effect on hen hepatic microsomal enzymes, whereas inhalation of 1000 ppm MiBK for 50 days or a mixture of 1000 ppm of each of n-hexane and MiBK for 30 days significantly induced aniline hydroxylase activity and cytochrome P-450 contents in hen liver microsomes. Liver microsomal proteins from these hens and from hens treated with β-naphthoflavone (β-NF) and phenobarbital (PB) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. While β-NF increased the 55-kDa band (1408%), PB, MiBK, and MiBK/n-hexane increased the protein band (49 kDa) (258, 335, and 253%, respectively), indicating that MiBK induces chicken hepatic cytochrome P-450. The results suggest that the synergistic action of MiBK on n-hexane neurotoxicity may be related to its ability to induce liver microsomal cytochrome P-450, resulting in increased metabolic activation of n-hexane to more potent neurotoxic metabolites.
UR - http://www.scopus.com/inward/record.url?scp=0022343446&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022343446&partnerID=8YFLogxK
U2 - 10.1016/0041-008X(85)90114-0
DO - 10.1016/0041-008X(85)90114-0
M3 - Article
C2 - 4049411
AN - SCOPUS:0022343446
SN - 0041-008X
VL - 81
SP - 1
EP - 16
JO - Toxicology and Applied Pharmacology
JF - Toxicology and Applied Pharmacology
IS - 1
ER -