Abstract
Modifications of DNA strands and nucleobases—both induced and accidental—are associated with unfavorable consequences including loss or gain in genetic information and mutations. Therefore, DNA repair proteins have essential roles in keeping genome fidelity. Recently, mounting evidence supports that 8-oxoguanine (8-oxoG), one of the most abundant genomic base modifications generated by reactive oxygen and nitrogen species, along with its cognate repair protein 8-oxoguanine DNA glycosylase1 (OGG1), has distinct roles in gene expression through transcription modulation or signal transduction. Binding to 8-oxoG located in gene regulatory regions, OGG1 acts as a transcription modulator, which can control transcription factor homing, induce allosteric transition of G-quadruplex structure, or recruit chromatin remodelers. In addition, post-repair complex formed between OGG1 and its repair product-free 8-oxoG increases the levels of active small GTPases and induces downstream signaling cascades to trigger gene expressions. The present review discusses how cells exploit damaged guanine base(s) and the authentic repair protein to orchestrate a profile of various transcriptomes in redox-regulated biological processes.
Original language | English (US) |
---|---|
Pages (from-to) | 3741-3750 |
Number of pages | 10 |
Journal | Cellular and Molecular Life Sciences |
Volume | 75 |
Issue number | 20 |
DOIs | |
State | Published - Oct 1 2018 |
Keywords
- DNA methylation
- Epigenetic
- Post-repair signaling
- Transcription modulation
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Pharmacology
- Cellular and Molecular Neuroscience
- Cell Biology