TY - JOUR
T1 - The role of sequence context, nucleotide pool balance and stress in 2'-deoxynucleotide misincorporation in viral, bacterial and mammalian RNA
AU - Wang, Jin
AU - Dong, Hongping
AU - Chionh, Yok Hian
AU - Mcbee, Megan E.
AU - Sirirungruang, Sasilada
AU - Cunningham, Richard P.
AU - Shi, Pei Yong
AU - Dedon, Peter C.
N1 - Publisher Copyright:
© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
PY - 2016/10/14
Y1 - 2016/10/14
N2 - The misincorporation of 2'-deoxyribonucleotides (dNs) into RNA has important implications for the function of non-coding RNAs, the translational fidelity of coding RNAs and the mutagenic evolution of viral RNA genomes. However, quantitative appreciation for the degree to which dN misincorporation occurs is limited by the lack of analytical tools. Here, we report a method to hydrolyze RNA to release 2'-deoxyribonucleotide-ribonucleotide pairs (dNrN) that are then quantified by chromatography-coupled mass spectrometry (LC-MS). Using this platform, we found misincorporated dNs occurring at 1 per 103 to 105 ribonucleotide (nt) in mRNA, rRNAs and tRNA in human cells, Escherichia coli, Saccharomyces cerevisiae and, most abundantly, in the RNA genome of dengue virus. The frequency of dNs varied widely among organisms and sequence contexts, and partly reflected the in vitro discrimination efficiencies of different RNA polymerases against 2'-deoxyribonucleoside 5'-triphosphates (dNTPs). Further, we demonstrate a strong link between dN frequencies in RNA and the balance of dNTPs and ribonucleoside 5'-triphosphates (rNTPs) in the cellular pool, with significant stress-induced variation of dN incorporation. Potential implications of dNs in RNA are discussed, including the possibilities of dN incorporation in RNA as a contributing factor in viral evolution and human disease, and as a host immune defense mechanism against viral infections.
AB - The misincorporation of 2'-deoxyribonucleotides (dNs) into RNA has important implications for the function of non-coding RNAs, the translational fidelity of coding RNAs and the mutagenic evolution of viral RNA genomes. However, quantitative appreciation for the degree to which dN misincorporation occurs is limited by the lack of analytical tools. Here, we report a method to hydrolyze RNA to release 2'-deoxyribonucleotide-ribonucleotide pairs (dNrN) that are then quantified by chromatography-coupled mass spectrometry (LC-MS). Using this platform, we found misincorporated dNs occurring at 1 per 103 to 105 ribonucleotide (nt) in mRNA, rRNAs and tRNA in human cells, Escherichia coli, Saccharomyces cerevisiae and, most abundantly, in the RNA genome of dengue virus. The frequency of dNs varied widely among organisms and sequence contexts, and partly reflected the in vitro discrimination efficiencies of different RNA polymerases against 2'-deoxyribonucleoside 5'-triphosphates (dNTPs). Further, we demonstrate a strong link between dN frequencies in RNA and the balance of dNTPs and ribonucleoside 5'-triphosphates (rNTPs) in the cellular pool, with significant stress-induced variation of dN incorporation. Potential implications of dNs in RNA are discussed, including the possibilities of dN incorporation in RNA as a contributing factor in viral evolution and human disease, and as a host immune defense mechanism against viral infections.
UR - http://www.scopus.com/inward/record.url?scp=84992411625&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84992411625&partnerID=8YFLogxK
U2 - 10.1093/nar/gkw572
DO - 10.1093/nar/gkw572
M3 - Article
C2 - 27365049
AN - SCOPUS:84992411625
SN - 0305-1048
VL - 44
SP - 8962
EP - 8975
JO - Nucleic acids research
JF - Nucleic acids research
IS - 18
ER -