TY - JOUR
T1 - The role of caspase-3 activation in phencyclidine-induced neuronal death in postnatal rats
AU - Wang, Cheng Z.
AU - Johnson, Kenneth M.
N1 - Funding Information:
We are grateful to Dr Leoncio A Vergara for his help with confocal microscopy and Dr Gang Lei for his comments in preparing this manuscript. We also thank Ms Tiffany E Springsted for her assistance. This work was supported by grants MH63871 and DA02073 from the US Department of Health and Human Services.
PY - 2007/5/24
Y1 - 2007/5/24
N2 - This study determined the role of caspase-3 in phencyclidine (PCP)-induced neurodegeneration in postnatal rats. PCP administration to postnatal day 7 rats induced a dose-dependent increase in caspase-3 enzymatic activity in frontal cortex, striatum, and hippocampus. Enzymatic activation was present at 4 h, peaked between 6 and 12 h, and disappeared by 24 h. Further, cleaved caspase-3-immunoreactive neurons were detected as early as 2 h in the cortex, and were found throughout the brain, including, in addition, the thalamus and striatum. Within the cingulate, frontal, parietal, and retrosplenial cortices, immunoreactivity was specific for layers II-IV (especially layer II). Neurons positive for both silver staining and terminal deoxynucleotidyl transferase biotin-d-UTP nick-end labeling (TUNEL) were found in the same brain regions and subregions. Double labeling experiments confirmed that cleaved caspase-3 and TUNEL were coexpressed in many neurons in all brain regions and subregions studied. Temporal studies revealed that procaspase-3 cleavage preceded TUNEL staining by about 3 h, with many neurons being positive for both caspase-3 and TUNEL 9 h after PCP treatment. In organotypic corticostriatal slices, PCP caused a concentration- and time-dependent cleavage of procaspase-3 that was also colocalized with TUNEL staining in layers II-IV of the parietal cortex. Caspase-3 activation again preceded PCP-induced DNA damage assessed by TUNEL. PCP-induced neuronal death in vitro as measured by TUNEL staining was blocked 85% by Ac-AAVALLPAVLLALLAPDEVD-CHO, a cell-permeable selective caspase-3 inhibitor. These data demonstrate that caspase-3 activation plays a necessary role in the regionally selective neuronal death induced by PCP in the developing rat brain.
AB - This study determined the role of caspase-3 in phencyclidine (PCP)-induced neurodegeneration in postnatal rats. PCP administration to postnatal day 7 rats induced a dose-dependent increase in caspase-3 enzymatic activity in frontal cortex, striatum, and hippocampus. Enzymatic activation was present at 4 h, peaked between 6 and 12 h, and disappeared by 24 h. Further, cleaved caspase-3-immunoreactive neurons were detected as early as 2 h in the cortex, and were found throughout the brain, including, in addition, the thalamus and striatum. Within the cingulate, frontal, parietal, and retrosplenial cortices, immunoreactivity was specific for layers II-IV (especially layer II). Neurons positive for both silver staining and terminal deoxynucleotidyl transferase biotin-d-UTP nick-end labeling (TUNEL) were found in the same brain regions and subregions. Double labeling experiments confirmed that cleaved caspase-3 and TUNEL were coexpressed in many neurons in all brain regions and subregions studied. Temporal studies revealed that procaspase-3 cleavage preceded TUNEL staining by about 3 h, with many neurons being positive for both caspase-3 and TUNEL 9 h after PCP treatment. In organotypic corticostriatal slices, PCP caused a concentration- and time-dependent cleavage of procaspase-3 that was also colocalized with TUNEL staining in layers II-IV of the parietal cortex. Caspase-3 activation again preceded PCP-induced DNA damage assessed by TUNEL. PCP-induced neuronal death in vitro as measured by TUNEL staining was blocked 85% by Ac-AAVALLPAVLLALLAPDEVD-CHO, a cell-permeable selective caspase-3 inhibitor. These data demonstrate that caspase-3 activation plays a necessary role in the regionally selective neuronal death induced by PCP in the developing rat brain.
KW - Apoptosis
KW - Caspase-3
KW - Development
KW - Neurodegeneration
KW - Phencyclidine
KW - Schizophrenia
UR - http://www.scopus.com/inward/record.url?scp=34247388039&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247388039&partnerID=8YFLogxK
U2 - 10.1038/sj.npp.1301202
DO - 10.1038/sj.npp.1301202
M3 - Article
C2 - 16985504
AN - SCOPUS:34247388039
SN - 0893-133X
VL - 32
SP - 1178
EP - 1194
JO - Neuropsychopharmacology
JF - Neuropsychopharmacology
IS - 5
ER -