TY - JOUR
T1 - The Escherichia coli primosomal dnat protein exists in solution as a monomer-trimer equilibrium system
AU - Szymanski, Michal R.
AU - Jezewska, Maria J.
AU - Bujalowski, Wlodzimierz
PY - 2013/3/19
Y1 - 2013/3/19
N2 - The oligomerization reaction of the Escherichia coli DnaT protein has been quantitatively examined using fluorescence anisotropy and analytical ultracentrifugation methods. In solution, DnaT exists as a monomer-trimer equilibrium system. At the estimated concentration in the E. coli cell, DnaT forms a mixture of the monomer and trimer states with a 3:1 molar ratio. In spite of the modest affinity, the trimerization is a highly cooperative process, without the detectable presence of the intervening dimer. The DnaT monomer consists of a large N-terminal core domain and a small C-terminal region. The removal of the C-terminal region dramatically affects the oligomerization process. The isolated N-terminal domain forms a dimer instead of the trimer. These results indicate that the DnaT monomer possesses two structurally different, interacting sites. One site is located on the N-terminal domain, and two monomers, in the trimer, are associated through their binding sites located on that domain. The C-terminal region forms the other interacting site. The third monomer is engaged through the C-terminal regions. Surprisingly, the high affinity of the N-terminal domain dimer indicates that the DnaT monomer undergoes a conformational transition upon oligomerization, involving the C-terminal region. These data and the high specificity of the trimerization reaction, i.e., lack of any oligomers higher than a trimer, indicate that each monomer in the trimer is in contact with the two remaining monomers. A model of the global structure of the DnaT trimer based on the thermodynamic and hydrodynamic data is discussed.
AB - The oligomerization reaction of the Escherichia coli DnaT protein has been quantitatively examined using fluorescence anisotropy and analytical ultracentrifugation methods. In solution, DnaT exists as a monomer-trimer equilibrium system. At the estimated concentration in the E. coli cell, DnaT forms a mixture of the monomer and trimer states with a 3:1 molar ratio. In spite of the modest affinity, the trimerization is a highly cooperative process, without the detectable presence of the intervening dimer. The DnaT monomer consists of a large N-terminal core domain and a small C-terminal region. The removal of the C-terminal region dramatically affects the oligomerization process. The isolated N-terminal domain forms a dimer instead of the trimer. These results indicate that the DnaT monomer possesses two structurally different, interacting sites. One site is located on the N-terminal domain, and two monomers, in the trimer, are associated through their binding sites located on that domain. The C-terminal region forms the other interacting site. The third monomer is engaged through the C-terminal regions. Surprisingly, the high affinity of the N-terminal domain dimer indicates that the DnaT monomer undergoes a conformational transition upon oligomerization, involving the C-terminal region. These data and the high specificity of the trimerization reaction, i.e., lack of any oligomers higher than a trimer, indicate that each monomer in the trimer is in contact with the two remaining monomers. A model of the global structure of the DnaT trimer based on the thermodynamic and hydrodynamic data is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84875472588&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875472588&partnerID=8YFLogxK
U2 - 10.1021/bi301568w
DO - 10.1021/bi301568w
M3 - Article
C2 - 23418648
AN - SCOPUS:84875472588
SN - 0006-2960
VL - 52
SP - 1845
EP - 1857
JO - Biochemistry
JF - Biochemistry
IS - 11
ER -