TY - JOUR
T1 - The crystallographic fast Fourier transform. IV. FFT-asymmetric units in the reciprocal space
AU - Kudlicki, Andrzej
AU - Rowicka, Maga
AU - Otwinowski, Zbyszek
PY - 2004/3
Y1 - 2004/3
N2 - New algorithms have been outlined for efficient calculation of the fast Fourier transform of data revealing crystallographic symmetries in previous papers by Rowicka, Kudlicki & Otwinowski [Acta Cryst. (2002), A58, 574-579; Acta Cryst. (2003), A59, 172-182; Acta Cryst. (2003), A59, 183-192]. The present paper deals with three implementation-related issues, which have not been discussed before. First, the shape of the FFT-asymmetric unit in the reciprocal space is discussed in detail. Next, a method is presented of reducing symmetry in-place, without the need to allocate memory for intermediate results. Finally, there is a discussion on how the algorithm can be used for the inverse Fourier transform. The results are derived for the case of the one-step symmetry reduction [Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst. A59, 172-182]. The algorithms are also an important step in the more complicated cases of centered lattices [Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst. A59, 183-192] and space groups with non-removable special positions, such as cubic groups [Rowicka, Kudlicki & Otwinowski (2004), in preparation]. In the present paper, as in our previous ones, complex-to-complex FFTs only are dealt with. Modifications needed to adapt the results to data with Hermitian symmetry will be described in our forthcoming article [Kudlicki, Rowicka & Otwinowski (2004), in preparation].
AB - New algorithms have been outlined for efficient calculation of the fast Fourier transform of data revealing crystallographic symmetries in previous papers by Rowicka, Kudlicki & Otwinowski [Acta Cryst. (2002), A58, 574-579; Acta Cryst. (2003), A59, 172-182; Acta Cryst. (2003), A59, 183-192]. The present paper deals with three implementation-related issues, which have not been discussed before. First, the shape of the FFT-asymmetric unit in the reciprocal space is discussed in detail. Next, a method is presented of reducing symmetry in-place, without the need to allocate memory for intermediate results. Finally, there is a discussion on how the algorithm can be used for the inverse Fourier transform. The results are derived for the case of the one-step symmetry reduction [Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst. A59, 172-182]. The algorithms are also an important step in the more complicated cases of centered lattices [Rowicka, Kudlicki & Otwinowski (2003). Acta Cryst. A59, 183-192] and space groups with non-removable special positions, such as cubic groups [Rowicka, Kudlicki & Otwinowski (2004), in preparation]. In the present paper, as in our previous ones, complex-to-complex FFTs only are dealt with. Modifications needed to adapt the results to data with Hermitian symmetry will be described in our forthcoming article [Kudlicki, Rowicka & Otwinowski (2004), in preparation].
UR - http://www.scopus.com/inward/record.url?scp=1642602220&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1642602220&partnerID=8YFLogxK
U2 - 10.1107/S0108767303029659
DO - 10.1107/S0108767303029659
M3 - Article
C2 - 14966326
AN - SCOPUS:1642602220
SN - 0108-7673
VL - 60
SP - 146
EP - 152
JO - Acta Crystallographica Section A: Foundations of Crystallography
JF - Acta Crystallographica Section A: Foundations of Crystallography
IS - 2
ER -