TY - JOUR
T1 - Supplemental impact of marine red seaweed (Halymenia palmata) on the growth performance, total tract nutrient digestibility, blood profiles, intestine histomorphology, meat quality, fecal gas emission, and microbial counts in broilers
AU - Balasubramanian, Balamuralikrishnan
AU - Shanmugam, Sureshkumar
AU - Park, Sungkwon
AU - Recharla, Neeraja
AU - Koo, Jin Su
AU - Andretta, Ines
AU - Kim, In Ho
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/5
Y1 - 2021/5
N2 - The present study was conducted to evaluate the dietary effects of a marine red seaweed, Palmaria palmata, on the growth performance, blood profile, nutrient digestibility, meat quality, fecal gas emission, microbial population, and intestinal morphology of broilers. A total of 720 Ross 308 broiler chicks (1 day old), with an average body weight of 45 ± 0.50 g, were assigned to one of five dietary treatments (randomized complete block design) in a 42-day feeding trial. The five dietary treatments consisted of a basal diet (0% supplementation; control), and diets supplemented with 0.05%, 0.01%, 0.15%, or 0.25% red seaweed. Eight replicates were prepared per treatment, with each replicate consisting of 18 chicks in a cage. The results showed that there tended to be a greater increase in body weight in the seaweed-supplemented groups from day (d) 14 to 28 (p = 0.087) and d 28 to 42 (p = 0.082) compared to the control group, regardless of feed intake. Feed intake in the seaweed-supplemented groups increased linearly from d 14 to 28. A linear relationship between seaweed supplementation and the feed conversion ratio was observed from d 14 to 28 and throughout the whole experiment. The dietary inclusion of seaweed was linearly related to levels of albumin, creatinine, uric acid, and white blood cells in the broilers. Additionally, the total tract digestibility of dry matter increased linearly with an increase in seaweed supplementation. The dietary inclusion of seaweed had a beneficial effect on fecal microbes as Lactobacillus sp. counts increased and Escherichia coli and Salmonella sp. counts decreased on day 42. Histopathological examination of the intestine confirmed that seaweed dietary supplementation enhanced the heights and widths of the villi. Furthermore, the emission of fecal gases (NH3 and H2S) decreased linearly in broilers fed seaweed-supplemented diets. Dietary supplementation with seaweed led to improvements in meat quality traits, such as reductions in drip loss, water holding capacity, and cooking loss, as well as increases in relative organ weights. Based on these positive effects, dietary supplementation with seaweed in broilers can be considered a dietary option in poultry production.
AB - The present study was conducted to evaluate the dietary effects of a marine red seaweed, Palmaria palmata, on the growth performance, blood profile, nutrient digestibility, meat quality, fecal gas emission, microbial population, and intestinal morphology of broilers. A total of 720 Ross 308 broiler chicks (1 day old), with an average body weight of 45 ± 0.50 g, were assigned to one of five dietary treatments (randomized complete block design) in a 42-day feeding trial. The five dietary treatments consisted of a basal diet (0% supplementation; control), and diets supplemented with 0.05%, 0.01%, 0.15%, or 0.25% red seaweed. Eight replicates were prepared per treatment, with each replicate consisting of 18 chicks in a cage. The results showed that there tended to be a greater increase in body weight in the seaweed-supplemented groups from day (d) 14 to 28 (p = 0.087) and d 28 to 42 (p = 0.082) compared to the control group, regardless of feed intake. Feed intake in the seaweed-supplemented groups increased linearly from d 14 to 28. A linear relationship between seaweed supplementation and the feed conversion ratio was observed from d 14 to 28 and throughout the whole experiment. The dietary inclusion of seaweed was linearly related to levels of albumin, creatinine, uric acid, and white blood cells in the broilers. Additionally, the total tract digestibility of dry matter increased linearly with an increase in seaweed supplementation. The dietary inclusion of seaweed had a beneficial effect on fecal microbes as Lactobacillus sp. counts increased and Escherichia coli and Salmonella sp. counts decreased on day 42. Histopathological examination of the intestine confirmed that seaweed dietary supplementation enhanced the heights and widths of the villi. Furthermore, the emission of fecal gases (NH3 and H2S) decreased linearly in broilers fed seaweed-supplemented diets. Dietary supplementation with seaweed led to improvements in meat quality traits, such as reductions in drip loss, water holding capacity, and cooking loss, as well as increases in relative organ weights. Based on these positive effects, dietary supplementation with seaweed in broilers can be considered a dietary option in poultry production.
KW - Antibiotic alternative
KW - Feed additive
KW - Feeding
KW - Poultry
UR - http://www.scopus.com/inward/record.url?scp=85104573834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104573834&partnerID=8YFLogxK
U2 - 10.3390/ani11051244
DO - 10.3390/ani11051244
M3 - Article
AN - SCOPUS:85104573834
SN - 2076-2615
VL - 11
JO - Animals
JF - Animals
IS - 5
M1 - 1244
ER -