Abstract
Motors generating mechanical force, powered by the hydrolysis of ATP, translocate double-stranded DNA into preformed capsids (proheads) of bacterial viruses and certain animal viruses. Here we describe the motor that packages the double-stranded DNA of the Bacillus subtilis bacteriophage φ29 into a precursor capsid. We determined the structure of the head-tail connector-the central component of the φ29 DNA packaging motor-to 3.2Å resolution by means of X-ray crystallography. We then fitted the connector into the electron densities of the prohead and of the partially packaged prohead as determined using cryo-electron microscopy and image reconstruction analysis. Our results suggest that the prohead plus dodecameric connector, prohead RNA, viral ATPase and DNA comprise a rotary motor with the head-prohead RNA-ATPase complex acting as a stator, the DNA acting as a spindle, and the connector as a ball-race. The helical nature of the DNA converts the rotary action of the connector into translation of the DNA.
Original language | English (US) |
---|---|
Pages (from-to) | 745-750 |
Number of pages | 6 |
Journal | Nature |
Volume | 408 |
Issue number | 6813 |
DOIs | |
State | Published - Dec 7 2000 |
Externally published | Yes |
ASJC Scopus subject areas
- General