Structure-Activity Relationship Studies of Substituted 2-(Isoxazol-3-yl)-2-oxo-N′-phenyl-acetohydrazonoyl Cyanide Analogues: Identification of Potent Exchange Proteins Directly Activated by cAMP (EPAC) Antagonists

Na Ye, Yingmin Zhu, Haijun Chen, Zhiqing Liu, Fang C. Mei, Christopher Wild, Haiying Chen, Xiaodong Cheng, Jia Zhou

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Exchange proteins directly activated by cAMP (EPAC) as guanine nucleotide exchange factors mediate the effects of the pivotal second messenger cAMP, thereby regulating a wide variety of intracellular physiological and pathophysiological processes. A series of novel 2-(isoxazol-3-yl)-2-oxo-N′-phenyl-acetohydrazonoyl cyanide EPAC antagonists was synthesized and evaluated in an effort to optimize properties of the previously identified high-throughput (HTS) hit 1 (ESI-09). Structure-activity relationship (SAR) analysis led to the discovery of several more active EPAC antagonists (e.g., 22 (HJC0726), 35 (NY0123), and 47 (NY0173)) with low micromolar inhibitory activity. These inhibitors may serve as valuable pharmacological probes to facilitate our efforts in elucidating the biological functions of EPAC and developing potential novel therapeutics against human diseases. Our SAR results have also revealed that further modification at the 3-, 4-, and 5-positions of the phenyl ring as well as the 5-position of the isoxazole moiety may allow for the development of more potent EPAC antagonists.

Original languageEnglish (US)
Pages (from-to)6033-6047
Number of pages15
JournalJournal of medicinal chemistry
Volume58
Issue number15
DOIs
StatePublished - Jul 17 2015

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery

Fingerprint

Dive into the research topics of 'Structure-Activity Relationship Studies of Substituted 2-(Isoxazol-3-yl)-2-oxo-N′-phenyl-acetohydrazonoyl Cyanide Analogues: Identification of Potent Exchange Proteins Directly Activated by cAMP (EPAC) Antagonists'. Together they form a unique fingerprint.

Cite this