Abstract
The ability to prepare single-stranded chromosomal target DNA allows innovative uses of FISH technology for studies of chromosome organization. Standard FISH methodologies require functionally single-stranded DNAs in order to facilitate hybridization between the probe and the complementary chromosomal target sequence. This usually involves denaturation of double-stranded probes to induce temporary separation of the DNA strands. Strand-specific FISH (CO-FISH; Chromosome Orientation-FISH) involves selective removal of newly replicated strands from DNA of metaphase chromosomes which results in single-stranded target DNA. When single-stranded probes are then hybridized to such targets, the resulting strand-specific hybridization is capable of revealing a level of information previously unattainable at the cytogenetic level. Mammalian telomeric DNA consists of tandem repeats of the (TTAGGG) sequence, oriented 5′→3′ towards the termini of all vertebrate chromosomes. Based on this conserved structural organization, CO-FISH with a telomere probe reveals the absolute 5′→3′ orientation of DNA sequences with respect to the pter→qter direction of chromosomes. Development and various applications of CO-FISH will be discussed: detection of cryptic inversions, discrimination between telomeres produced by leading-versus lagging-strand synthesis, and replication timing of mammalian telomeres. Copyright c 2004 S. Karger AG, Basel.
Original language | English (US) |
---|---|
Pages (from-to) | 14-17 |
Number of pages | 4 |
Journal | Cytogenetic and Genome Research |
Volume | 107 |
Issue number | 1-2 |
DOIs | |
State | Published - 2004 |
ASJC Scopus subject areas
- Molecular Biology
- Genetics
- Genetics(clinical)