TY - JOUR
T1 - Soluble guanylyl cyclase activation promotes angiogenesis
AU - Pyriochou, Anastasia
AU - Beis, Dimitris
AU - Koika, Vasiliki
AU - Potytarchou, Christos
AU - Papadimitriou, Evangelia
AU - Zhou, Zongmin
AU - Papapetropoulos, Andreas
PY - 2006
Y1 - 2006
N2 - Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme carrying a heme prosthetic group that functions as a nitric oxide (NO) sensor. sGC is present in most cells types, including the vascular endothelium, where its biological functions remain largely unexplored. Herein, we have investigated the role of sGC in angiogenesis and angiogenesis-related properties of endothelial cells (EC). Initially, we determined that sGC was present and enzymatically active in the chicken chorioallantoic membrane (CAM) during the days of maximal angiogenesis. In the CAM, inhibition of endogenous sGC inhibited neovascularization, whereas activation promoted neovessel formation. Using zebrafish as a model for vascular development, we did not detect any effect on vasculogenesis upon sGC blockade, but we did observe an abnormal angiogenic response involving the cranial and intersegmental vessels, as well as the posterior cardinal vein. In vitro, pharmacological activation of sGC or adenovirus-mediated sGC gene transfer promoted EC proliferation and migration, whereas sGC inhibition blocked tube-like network formation. In addition, sGC inhibition blocked the migratory response to vascular EC growth factor. Cells infected with sGC-expressing adenoviruses exhibited increased extracellular signal-regulated kinase 1/2 and p38 MAPK activation that was sensitive to sGC inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, suggesting that these mitogen-activated protein kinases are downstream effectors of sGC in EC. A functional role for p38 in cGMP-stimulated migration was demonstrated using SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H- imidazole]; pharmacological inhibition of p38 attenuated BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl] -pyrimidin-4-ylamine] and sGC overexpression-induced EC mobilization. We conclude that sGC activation promotes the expression of angiogenesis-related properties by EC and that sGC might represent a novel target to modulate neovessel formation.
AB - Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme carrying a heme prosthetic group that functions as a nitric oxide (NO) sensor. sGC is present in most cells types, including the vascular endothelium, where its biological functions remain largely unexplored. Herein, we have investigated the role of sGC in angiogenesis and angiogenesis-related properties of endothelial cells (EC). Initially, we determined that sGC was present and enzymatically active in the chicken chorioallantoic membrane (CAM) during the days of maximal angiogenesis. In the CAM, inhibition of endogenous sGC inhibited neovascularization, whereas activation promoted neovessel formation. Using zebrafish as a model for vascular development, we did not detect any effect on vasculogenesis upon sGC blockade, but we did observe an abnormal angiogenic response involving the cranial and intersegmental vessels, as well as the posterior cardinal vein. In vitro, pharmacological activation of sGC or adenovirus-mediated sGC gene transfer promoted EC proliferation and migration, whereas sGC inhibition blocked tube-like network formation. In addition, sGC inhibition blocked the migratory response to vascular EC growth factor. Cells infected with sGC-expressing adenoviruses exhibited increased extracellular signal-regulated kinase 1/2 and p38 MAPK activation that was sensitive to sGC inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, suggesting that these mitogen-activated protein kinases are downstream effectors of sGC in EC. A functional role for p38 in cGMP-stimulated migration was demonstrated using SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H- imidazole]; pharmacological inhibition of p38 attenuated BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl] -pyrimidin-4-ylamine] and sGC overexpression-induced EC mobilization. We conclude that sGC activation promotes the expression of angiogenesis-related properties by EC and that sGC might represent a novel target to modulate neovessel formation.
UR - http://www.scopus.com/inward/record.url?scp=33751163519&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751163519&partnerID=8YFLogxK
U2 - 10.1124/jpet.106.108878
DO - 10.1124/jpet.106.108878
M3 - Article
C2 - 16940434
AN - SCOPUS:33751163519
SN - 0022-3565
VL - 319
SP - 663
EP - 671
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 2
ER -