Shifts in receptors during submergence of an encephalitic arbovirus

Wanyu Li, Jessica A. Plante, Chie Yu Lin, Himanish Basu, Jesse S. Plung, Xiaoyi Fan, Joshua M. Boeckers, Jessica Oros, Tierra K. Buck, Praju V. Anekal, Wesley A. Hanson, Haley Varnum, Adrienne Wells, Colin J. Mann, Laurentia V. Tjang, Pan Yang, Rachel A. Reyna, Brooke M. Mitchell, Divya P. Shinde, Jordyn L. WalkerSo Yoen Choi, Vesna Brusic, Paula Montero Llopis, Scott C. Weaver, Hisashi Umemori, Isaac M. Chiu, Kenneth S. Plante, Jonathan Abraham

Research output: Contribution to journalArticlepeer-review

Abstract

Western equine encephalitis virus (WEEV) is an arthropod-borne virus (arbovirus) that frequently caused major outbreaks of encephalitis in humans and horses in the early twentieth century, but the frequency of outbreaks has since decreased markedly, and strains of this alphavirus isolated in the past two decades are less virulent in mammals than strains isolated in the 1930s and 1940s1–3. The basis for this phenotypic change in WEEV strains and coincident decrease in epizootic activity (known as viral submergence3) is unclear, as is the possibility of re-emergence of highly virulent strains. Here we identify protocadherin 10 (PCDH10) as a cellular receptor for WEEV. We show that multiple highly virulent ancestral WEEV strains isolated in the 1930s and 1940s, in addition to binding human PCDH10, could also bind very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), which are recognized by another encephalitic alphavirus as receptors4. However, whereas most of the WEEV strains that we examined bind to PCDH10, a contemporary strain has lost the ability to recognize mammalian PCDH10 while retaining the ability to bind avian receptors, suggesting WEEV adaptation to a main reservoir host during enzootic circulation. PCDH10 supports WEEV E2–E1 glycoprotein-mediated infection of primary mouse cortical neurons, and administration of a soluble form of PCDH10 protects mice from lethal WEEV challenge. Our results have implications for the development of medical countermeasures and for risk assessment for re-emerging WEEV strains.

Original languageEnglish (US)
Pages (from-to)614-621
Number of pages8
JournalNature
Volume632
Issue number8025
DOIs
StatePublished - Aug 15 2024

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Shifts in receptors during submergence of an encephalitic arbovirus'. Together they form a unique fingerprint.

Cite this