TY - JOUR
T1 - Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice
AU - Song, Juquan
AU - Finnerty, Celeste C.
AU - Herndon, David N.
AU - Boehning, Darren
AU - Jeschke, Marc G.
N1 - Funding Information:
This work was supported by grants from Shriners Hospitals for Children (8460, 8640, 8660, 8740, and 8760) and the National Institutes of Health (GM56687, GM081685, NIH T32-GM08256, NIH P50-GM60338).
PY - 2009/9
Y1 - 2009/9
N2 - Severe burn injury results in liver dysfunction and damage, with subsequent metabolic derangements contributing to patient morbidity and mortality. On a cellular level, significant postburn hepatocyte apoptosis occurs and likely contributes to liver dysfunction. However, the underlying mechanisms of hepatocyte apoptosis are poorly understood. The endoplasmic reticulum (ER) stress response/ unfolded protein response (UPR) pathway can lead to hepatocyte apoptosis under conditions of liver dysfunction. Thus, we hypothesized that ER stress/UPR may mediate hepatic dysfunction in response to burn injury. We investigated the temporal activation of hepatic ER stress in mice after a severe burn injury. Mice received a scald burn over 35% of their body surface and were killed at 1, 7, 14, and 21 d postburn. We found that severe burn induces hepatocyte apoptosis as indicated by increased caspase-3 activity ( P< 0.05). Serum albumin levels decreased postburn and remained lowered for up to 21 d, indicating that constitutive secretory protein synthesis was reduced. Significantly, upregulation of the ER stress markers glucose-related protein 78 (GRP78)/BIP, protein disulfide isomerase (PDI), p-protein kinase R-like endoplasmic reticulum kinase (p-PERK), and inositol-requiring enzyme 1α (IRE-1α) were found beginning 1 d postburn ( P< 0.05) and persisted up to 21 d postburn ( P< 0.05). Hepatic ER stress induced by burn injury was associated with compensatory upregulation of the calcium chaperone/storage proteins calnexin and calreticulin ( P< 0.05), suggesting that ER calcium store depletion was the primary trigger for induction of the ER stress response. In summary, thermal injury in mice causes long-term adaptive and deleterious hepatic function alterations characterized by significant upregulation of the ER stress response.
AB - Severe burn injury results in liver dysfunction and damage, with subsequent metabolic derangements contributing to patient morbidity and mortality. On a cellular level, significant postburn hepatocyte apoptosis occurs and likely contributes to liver dysfunction. However, the underlying mechanisms of hepatocyte apoptosis are poorly understood. The endoplasmic reticulum (ER) stress response/ unfolded protein response (UPR) pathway can lead to hepatocyte apoptosis under conditions of liver dysfunction. Thus, we hypothesized that ER stress/UPR may mediate hepatic dysfunction in response to burn injury. We investigated the temporal activation of hepatic ER stress in mice after a severe burn injury. Mice received a scald burn over 35% of their body surface and were killed at 1, 7, 14, and 21 d postburn. We found that severe burn induces hepatocyte apoptosis as indicated by increased caspase-3 activity ( P< 0.05). Serum albumin levels decreased postburn and remained lowered for up to 21 d, indicating that constitutive secretory protein synthesis was reduced. Significantly, upregulation of the ER stress markers glucose-related protein 78 (GRP78)/BIP, protein disulfide isomerase (PDI), p-protein kinase R-like endoplasmic reticulum kinase (p-PERK), and inositol-requiring enzyme 1α (IRE-1α) were found beginning 1 d postburn ( P< 0.05) and persisted up to 21 d postburn ( P< 0.05). Hepatic ER stress induced by burn injury was associated with compensatory upregulation of the calcium chaperone/storage proteins calnexin and calreticulin ( P< 0.05), suggesting that ER calcium store depletion was the primary trigger for induction of the ER stress response. In summary, thermal injury in mice causes long-term adaptive and deleterious hepatic function alterations characterized by significant upregulation of the ER stress response.
UR - http://www.scopus.com/inward/record.url?scp=70149092536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70149092536&partnerID=8YFLogxK
U2 - 10.2119/molmed.2009.00048
DO - 10.2119/molmed.2009.00048
M3 - Article
C2 - 19603103
AN - SCOPUS:70149092536
SN - 1076-1551
VL - 15
SP - 316
EP - 320
JO - Molecular Medicine
JF - Molecular Medicine
IS - 9-10
ER -