TY - JOUR
T1 - Separation of VX-2 rabbit carcinoma-derived cells capable of releasing collagenase
AU - Dabbous, Mustafa Kh
AU - El-Torky, Mahmoud
AU - Haney, Lena
AU - Sobhy, Nahed
AU - Brinkley, Sr Burcharda
N1 - Funding Information:
work was supported by USPHS Grant CA 25617 from the National Cancer Institute.
PY - 1983/2
Y1 - 1983/2
N2 - Primary and secondary cultures of VX-2 carcinoma produced high levels of collagenase activity in both active and latent forms in serum-free media. These cultures appeared morphologically heterogeneous in phase-contrast microscopy and revealed the presence of mainly three distinct forms; epithelial-like cells (E cells), fibroblast-like cells (F cells), and large rounded-flat cells which may represent a subclass of the F cells. Cell separation techniques such as brief dispase treatment, Percoll gradient centrifugation, thimerosal treatment, and rabbit serum were used to obtain predominantly one form or the other. The E cells never formed a monolayer but rather grew as limited size clusters of intimately associated cells with large nuclei and often appeared multinucleated. These cells were difficult to maintain in culture or serially passed more than a few times. The F cells, rare in early cultures but having the highest growth potential, appeared in various morphological forms ranging from spindle- to stellate-shaped cells. The cells in their third passage were capable of producing palpable tumors, similar in light and electron microscopic studies to the original tumor from which they were derived, when injected intramuscularly into recipient rabbits and produced specific collagenase activity in active and latent forms in serum-free media. Ultrastructural studies suggested that the E cells were of epithelial origin whereas the F cells were similar to stromal fibroblasts. Cytogenetic studies demonstrated that almost all of the E cells showed both numerical and structural chromosomal changes in a modal number of 54 chromosomes. On the other hand, the major cell population of the F cells resembled normal rabbit fibroblasts; both contained a normal diploid (2n = 44). However, few cells (4-6%) in the F-cell population were hyperdiploid with a modal chromosome number of 54. These cells may represent inadvertent contaminating E cells and account for the apparent limited turmorigenicity observed in early F-cell cultures. The data suggested that the E cells were of tumor origin whereas the majority of the F-cell population appeared to be of host origin. Furthermore, it is suggested that the E cells stimulate tumor-associated stromal cells to produce elevated levels of collagenolytic activity and contribute to collagen degradation during tumor invasion.
AB - Primary and secondary cultures of VX-2 carcinoma produced high levels of collagenase activity in both active and latent forms in serum-free media. These cultures appeared morphologically heterogeneous in phase-contrast microscopy and revealed the presence of mainly three distinct forms; epithelial-like cells (E cells), fibroblast-like cells (F cells), and large rounded-flat cells which may represent a subclass of the F cells. Cell separation techniques such as brief dispase treatment, Percoll gradient centrifugation, thimerosal treatment, and rabbit serum were used to obtain predominantly one form or the other. The E cells never formed a monolayer but rather grew as limited size clusters of intimately associated cells with large nuclei and often appeared multinucleated. These cells were difficult to maintain in culture or serially passed more than a few times. The F cells, rare in early cultures but having the highest growth potential, appeared in various morphological forms ranging from spindle- to stellate-shaped cells. The cells in their third passage were capable of producing palpable tumors, similar in light and electron microscopic studies to the original tumor from which they were derived, when injected intramuscularly into recipient rabbits and produced specific collagenase activity in active and latent forms in serum-free media. Ultrastructural studies suggested that the E cells were of epithelial origin whereas the F cells were similar to stromal fibroblasts. Cytogenetic studies demonstrated that almost all of the E cells showed both numerical and structural chromosomal changes in a modal number of 54 chromosomes. On the other hand, the major cell population of the F cells resembled normal rabbit fibroblasts; both contained a normal diploid (2n = 44). However, few cells (4-6%) in the F-cell population were hyperdiploid with a modal chromosome number of 54. These cells may represent inadvertent contaminating E cells and account for the apparent limited turmorigenicity observed in early F-cell cultures. The data suggested that the E cells were of tumor origin whereas the majority of the F-cell population appeared to be of host origin. Furthermore, it is suggested that the E cells stimulate tumor-associated stromal cells to produce elevated levels of collagenolytic activity and contribute to collagen degradation during tumor invasion.
UR - http://www.scopus.com/inward/record.url?scp=0020683865&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020683865&partnerID=8YFLogxK
U2 - 10.1016/0014-4800(83)90094-1
DO - 10.1016/0014-4800(83)90094-1
M3 - Article
C2 - 6299779
AN - SCOPUS:0020683865
SN - 0014-4800
VL - 38
SP - 1
EP - 21
JO - Experimental and Molecular Pathology
JF - Experimental and Molecular Pathology
IS - 1
ER -