TY - JOUR
T1 - Self-efficacy and physical activity in overweight and obese adults participating in a worksite weight loss intervention
T2 - Multistate modeling of wearable device data
AU - Robertson, Michael C.
AU - Green, Charles E.
AU - Liao, Yue
AU - Durand, Casey P.
AU - Basen-Engquist, Karen M.
N1 - Publisher Copyright:
© 2020 American Association for Cancer Research.
PY - 2020
Y1 - 2020
N2 - Background: Physical activity is associated with a reduced risk of numerous types of cancer and plays an important role in maintaining a healthy weight. Wearable physical activity trackers may supplement behavioral intervention and enable researchers to study how determinants like self-efficacy predict physical activity patterns over time. Methods: We used multistate models to evaluate how selfefficacy predicted physical activity states among overweight and obese individuals participating in a 26-week weight loss program (N = 96). We specified five states to capture physical activity patterns: (i) active (i.e., meeting recommendations for 2 weeks), (ii) insufficiently active, (iii) nonvalid wear, (iv) favorable transition (i.e., improvement in physical activity over 2 weeks), and (v) unfavorable transition.We calculated HRs of transition probabilities by self-efficacy, body mass index, age, and time. Results: The average prevalence of individuals in the active, insufficiently active, and nonvalid wear states was 13%, 44%, and 16%, respectively. Low self-efficacy negatively predicted entering an active state [HR, 0.51; 95% confidence interval (CI), 0.29- 0.88]. Obesity negatively predicted making a favorable transition out of an insufficiently active state (HR, 0.61; 95% CI, 0.40-0.91). Older participants were less likely to transition to the nonvalid wear state (HR, 0.53; 95% CI, 0.30-0.93). Device nonwear increased in the second half of the intervention (HR, 1.73; 95% CI, 1.07-2.81). Conclusions: Self-efficacy is an important predictor for clinically relevant physical activity change in overweight and obese individuals. Multistate modeling is useful for analyzing longitudinal physical activity data. Impact: Multistate modeling can be used for statistical inference of covariates and allow for explicit modeling of nonvalid wear.
AB - Background: Physical activity is associated with a reduced risk of numerous types of cancer and plays an important role in maintaining a healthy weight. Wearable physical activity trackers may supplement behavioral intervention and enable researchers to study how determinants like self-efficacy predict physical activity patterns over time. Methods: We used multistate models to evaluate how selfefficacy predicted physical activity states among overweight and obese individuals participating in a 26-week weight loss program (N = 96). We specified five states to capture physical activity patterns: (i) active (i.e., meeting recommendations for 2 weeks), (ii) insufficiently active, (iii) nonvalid wear, (iv) favorable transition (i.e., improvement in physical activity over 2 weeks), and (v) unfavorable transition.We calculated HRs of transition probabilities by self-efficacy, body mass index, age, and time. Results: The average prevalence of individuals in the active, insufficiently active, and nonvalid wear states was 13%, 44%, and 16%, respectively. Low self-efficacy negatively predicted entering an active state [HR, 0.51; 95% confidence interval (CI), 0.29- 0.88]. Obesity negatively predicted making a favorable transition out of an insufficiently active state (HR, 0.61; 95% CI, 0.40-0.91). Older participants were less likely to transition to the nonvalid wear state (HR, 0.53; 95% CI, 0.30-0.93). Device nonwear increased in the second half of the intervention (HR, 1.73; 95% CI, 1.07-2.81). Conclusions: Self-efficacy is an important predictor for clinically relevant physical activity change in overweight and obese individuals. Multistate modeling is useful for analyzing longitudinal physical activity data. Impact: Multistate modeling can be used for statistical inference of covariates and allow for explicit modeling of nonvalid wear.
UR - http://www.scopus.com/inward/record.url?scp=85082754354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082754354&partnerID=8YFLogxK
U2 - 10.1158/1055-9965.EPI-19-0907
DO - 10.1158/1055-9965.EPI-19-0907
M3 - Article
C2 - 31871110
AN - SCOPUS:85082754354
SN - 1055-9965
VL - 29
SP - 769
EP - 776
JO - Cancer Epidemiology Biomarkers and Prevention
JF - Cancer Epidemiology Biomarkers and Prevention
IS - 4
ER -