TY - JOUR
T1 - Role of W181 in modulating kinetic properties of Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase
AU - Roy, Sourav
AU - Karmakar, Tarak
AU - Nagappa, Lakshmeesha K.
AU - Prahlada Rao, Vasudeva S.
AU - Balasubramanian, Sundaram
AU - Balaram, Hemalatha
N1 - Publisher Copyright:
© 2016 Wiley Periodicals, Inc.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - Hypoxanthine-guanine-xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1-3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5-fold under activated condition as compared to that of the wild-type enzyme. The W181T mutant showed 10-fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross-correlation analyses show a communication between loop III' and the substrate binding site. Differential cross-correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669.
AB - Hypoxanthine-guanine-xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1-3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5-fold under activated condition as compared to that of the wild-type enzyme. The W181T mutant showed 10-fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross-correlation analyses show a communication between loop III' and the substrate binding site. Differential cross-correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669.
KW - PfHGXPRT
KW - dynamic cross-correlations
KW - molecular dynamics simulations
KW - phosphoribosyltransferase
KW - point mutation
UR - http://www.scopus.com/inward/record.url?scp=84981313173&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84981313173&partnerID=8YFLogxK
U2 - 10.1002/prot.25107
DO - 10.1002/prot.25107
M3 - Article
C2 - 27479359
AN - SCOPUS:84981313173
SN - 0887-3585
VL - 84
SP - 1658
EP - 1669
JO - Proteins: Structure, Function and Bioinformatics
JF - Proteins: Structure, Function and Bioinformatics
IS - 11
ER -