TY - JOUR
T1 - Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation
T2 - Evidence for an inhibitory loop involving endogenous IL-10
AU - Ajuebor, Maureen N.
AU - Das, Anuk M.
AU - Virág, László
AU - Flower, Roderick J.
AU - Szabó, Csaba
AU - Perretti, Mauro
PY - 1999/2/1
Y1 - 1999/2/1
N2 - The roles played by resident macrophages (Mφ) and mast cells (MCs) in polymorphonuclear leukocyte (PMN) accumulation and chemokine production within the mouse peritoneal cavity in response to administration of zymosan (0.2 and 1 mg), LPS (1 mg/kg), and thioglycolate (0.5 ml of a 3% suspension) were investigated. A marked reduction (>95%) in intact MC numbers was obtained by pretreatment with the MC activator compound 48/80, whereas resident Mφ were greatly diminished (>85%) by a 3-day treatment with liposomes encapsulating the cytotoxic drug dichloromethylene-bisphosphonate. No modulation of thioglycolate-induced inflammation was seen with either pretreatment. Removal of either MCs or Mφ attenuated LPS-induced PMN extravasation without affecting the levels of the chemokines murine monocyte chemoattractant protein-1 and KC measured in the lavage fluids. In contrast, MC depletion inhibited PMN accumulation and murine monocyte chemoattractant protein-1 and KC production in the zymosan peritonitis model. Removal of Mφ augmented the accumulation of PMN elicited by the latter stimulus. This was due to an inhibitory action of Mφ-derived IL-10 because there was 1) a time- dependent release of IL-10 in the zymosan exudates; 2) a reduction in IL-10 levels following Mφ, but not MC, depletion; and 3) an increased PMN influx and chemokine production in IL-10 knockout mice. In conclusion, we propose a stimulus-dependent role of resident MCs in chemokine production and the existence of a regulatory loop between endogenous IL-10 and the chemokine- mediated cellular component of acute inflammation.
AB - The roles played by resident macrophages (Mφ) and mast cells (MCs) in polymorphonuclear leukocyte (PMN) accumulation and chemokine production within the mouse peritoneal cavity in response to administration of zymosan (0.2 and 1 mg), LPS (1 mg/kg), and thioglycolate (0.5 ml of a 3% suspension) were investigated. A marked reduction (>95%) in intact MC numbers was obtained by pretreatment with the MC activator compound 48/80, whereas resident Mφ were greatly diminished (>85%) by a 3-day treatment with liposomes encapsulating the cytotoxic drug dichloromethylene-bisphosphonate. No modulation of thioglycolate-induced inflammation was seen with either pretreatment. Removal of either MCs or Mφ attenuated LPS-induced PMN extravasation without affecting the levels of the chemokines murine monocyte chemoattractant protein-1 and KC measured in the lavage fluids. In contrast, MC depletion inhibited PMN accumulation and murine monocyte chemoattractant protein-1 and KC production in the zymosan peritonitis model. Removal of Mφ augmented the accumulation of PMN elicited by the latter stimulus. This was due to an inhibitory action of Mφ-derived IL-10 because there was 1) a time- dependent release of IL-10 in the zymosan exudates; 2) a reduction in IL-10 levels following Mφ, but not MC, depletion; and 3) an increased PMN influx and chemokine production in IL-10 knockout mice. In conclusion, we propose a stimulus-dependent role of resident MCs in chemokine production and the existence of a regulatory loop between endogenous IL-10 and the chemokine- mediated cellular component of acute inflammation.
UR - http://www.scopus.com/inward/record.url?scp=0033083395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033083395&partnerID=8YFLogxK
M3 - Article
C2 - 9973430
AN - SCOPUS:0033083395
SN - 0022-1767
VL - 162
SP - 1685
EP - 1691
JO - Journal of Immunology
JF - Journal of Immunology
IS - 3
ER -