TY - JOUR
T1 - Role of DNA polymerase η in the bypass of a (6-4) TT photoproduct
AU - Johnson, R. E.
AU - Haracska, L.
AU - Prakash, S.
AU - Prakash, L.
PY - 2001
Y1 - 2001
N2 - UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase η (Polη), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Polη result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Polη for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3′ T of a (6-4) TT photoproduct, both yeast and human Polη preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polζ, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3′ T of the (6-4) TT lesion by Polη, and Polζ inserts the correct nucleotide A opposite the 5′ T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Polη and Polζ, wherein Polη inserts a nucleotide opposite the 3′ T of the lesion and Polζ extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3′ T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3′ T→C change that would result from the insertion of a G opposite the 3′ T of the (6-4) TT lesion.
AB - UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase η (Polη), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Polη result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Polη for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3′ T of a (6-4) TT photoproduct, both yeast and human Polη preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polζ, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3′ T of the (6-4) TT lesion by Polη, and Polζ inserts the correct nucleotide A opposite the 5′ T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Polη and Polζ, wherein Polη inserts a nucleotide opposite the 3′ T of the lesion and Polζ extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3′ T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3′ T→C change that would result from the insertion of a G opposite the 3′ T of the (6-4) TT lesion.
UR - http://www.scopus.com/inward/record.url?scp=0035034974&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035034974&partnerID=8YFLogxK
U2 - 10.1128/MCB.21.10.3558-3563.2001
DO - 10.1128/MCB.21.10.3558-3563.2001
M3 - Article
C2 - 11313481
AN - SCOPUS:0035034974
SN - 0270-7306
VL - 21
SP - 3558
EP - 3563
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 10
ER -