Abstract
Electronic structure methods and nonperturbative resonance theory are applied to study the radiative and radiationless decay mechanisms of the MgBr (A 2ΠΩ) vibrational levels. The X 2Σ+ and 1,2 2ΠΩ adiabatic electronic states are characterized using ab initio state-averaged multiconfigurational self-consistent field/second order configuration interaction wave functions. Interstate derivative couplings between the 2Π states have been calculated and used to construct a rigorous diabatic basis. The nonrelativistic potential energy curves are modified in the first order of degenerate perturbation theory to take account of the spin-orbit interactions treated within Breit-Pauli approximation. All vibrational levels in the A 2ΠΩ manifold are resonances predissociated by the repulsive 2 2Π state. A recently developed computational approach [S. Han and D. R. Yarkony, Mol. Phys. 88, 53 (1996)] based on a Feshbach formalism is employed to determine energies, linewidths, and radiative and radiationless decay rates in a coupled diabatic states basis within a Hund's case (a) approximation. Large nonadiabatic interactions cause significant energy shifts in the resonances levels. It is shown that a pronounced Ω-dependence in the radiationless decay rates results from the large fine structure splitting in the 2 2ΠΩ diabatic state which corresponds to Mg(1S)Br(2P). Comparisons with absorption and fluorescence spectra reveal important insights into A 2ΠΩ state decay. The spectroscopic constants of the A 2ΠΩ, Ω=3/2 and 1/2 states and the A 2Π3/2 state predissociation are well described in a Hund's case (a) approximation. However it is found that the A 2Π1/2 state predissociation is significantly underestimated in this limit. Rather the A 2Π1/2 state is indirectly predissociated by the 2 2Π3/2 state through rotational coupling to the A 2Π3/2 state.
Original language | English (US) |
---|---|
Pages (from-to) | 4091-4101 |
Number of pages | 11 |
Journal | Journal of Chemical Physics |
Volume | 106 |
Issue number | 10 |
DOIs | |
State | Published - Mar 8 1997 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry