Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors

Taleen Hanania, Kenneth M. Johnson

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Striatal function is heavily influenced by glutamatergic and dopaminergic afferent input. To ultimately better understand how the N-methyl-D-aspartate (NMDA) antagonist, phencyclidine (PCP), alters striatal function, we sought to determine how NMDA receptor function is influenced by activation of other glutamatergic receptors and by dopaminergic receptors. To this end, we used NMDA-stimulated efflux of [14C]GABA and [3H]acetylcholine (ACh) from striatal slices to assess the influence of these receptors on NMDA function. NMDA-stimulated [14C]GABA release was more sensitive to NMDA and glycine antagonists than was [3H]ACh release, suggesting that different NMDA receptors regulate the release of these neurotransmitters. Furthermore, NMDA-stimulated [3H]ACh release was inhibited by a D2 receptor mechanism whereas NMDA-stimulated [14C]GABA release was enhanced by D1 receptor activation. NMDA and (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) interact additively to evoke [3H]ACh release, and synergistically to evoke [14C]GABA release. An additive effect of NMDA and kainate (KA) was found on [14C]GABA release, but NMDA and KA acted in a less than additive manner in evoking [3H]ACh release. KA-stimulated [3H]ACh release was largely blocked by NMDA antagonists, suggesting mediation through activation of NMDA receptors, probably secondary to KA-induced glutamate release. A selective group II metabotropic receptor agonist inhibited NMDA-stimulated [14C]GABA and [3H]ACh release. On the other hand, NMDA-stimulated [14C]GABA release was potentiated by activation of group I metabotropic receptors. Thus, in addition to the differential modulation by D1- and D2-like receptors, the release of striatal neurotransmitters by NMDA receptor activation depends on the extent to which the other glutamate receptors, both ionotropic and metabotropic, are activated. Copyright (C) 1999 Elsevier Science B.V.

Original languageEnglish (US)
Pages (from-to)106-117
Number of pages12
JournalBrain Research
Issue number1-2
StatePublished - Oct 9 1999
Externally publishedYes


  • ACh release
  • Dopamine
  • GABA release
  • Glutamate
  • NMDA
  • Parkinson's disease
  • Striatum

ASJC Scopus subject areas

  • General Neuroscience
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology


Dive into the research topics of 'Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors'. Together they form a unique fingerprint.

Cite this