Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes

Umesh C.S. Yadav, Kota V. Ramana

Research output: Contribution to journalReview articlepeer-review

99 Scopus citations

Abstract

Oxidative stress plays a critical role in the pathophysiology of a wide range of diseases including cancer. This view has broadened significantly with the recent discoveries that reactive oxygen species initiated lipid peroxidation leads to the formation of potentially toxic lipid aldehyde species such as 4-hydroxy-trans-2-nonenal (HNE), acrolein, and malondialdehyde which activate various signaling intermediates that regulate cellular activity and dysfunction via a process called redox signaling. The lipid aldehyde species formed during synchronized enzymatic pathways result in the posttranslational modification of proteins and DNA leading to cytotoxicity and genotoxicty. Among the lipid aldehyde species, HNE has been widely accepted as a most toxic and abundant lipid aldehyde generated during lipid peroxidation. HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Activation of redox-sensitive transcription factors and their nuclear localization leads to transcriptional induction of several genes responsible for cell survival, differentiation, and death. In this review, we describe the mechanisms by which the lipid aldehydes transduce activation of NF-κB signaling pathways that may help to develop therapeutic strategies for the prevention of a number of inflammatory diseases.

Original languageEnglish (US)
Article number690545
JournalOxidative medicine and cellular longevity
DOIs
StatePublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Aging
  • Cell Biology

Fingerprint

Dive into the research topics of 'Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes'. Together they form a unique fingerprint.

Cite this