TY - JOUR
T1 - Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress
AU - Brunyanszki, Attila
AU - Olah, Gabor
AU - Coletta, Ciro
AU - Szczesny, Bartosz
AU - Szabo, Csaba
N1 - Publisher Copyright:
© 2014 by The American Society for Pharmacology and Experimental Therapeutics.
PY - 2014/10/1
Y1 - 2014/10/1
N2 - We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. β-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while β-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the β-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of β-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.
AB - We investigated the regulation of mitochondrial poly(ADP-ribose) polymerase 1 (PARP1) by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) system during oxidative stress in U937 monocytes. Oxidative stress induced an early (10 minutes) mitochondrial DNA damage, and concomitant activation of PARP1 in the mitochondria. These early events were followed by a progressive mitochondrial oxidant production and nuclear PARP1 activation (by 6 hours). These processes led to a functional impairment of mitochondria, culminating in cell death of mixed (necrotic/apoptotic) type. β-Adrenoceptor blockade with propranolol or inhibition of its downstream cAMP/PKA signaling attenuated, while β-adrenoceptor agonists and cAMP/PKA activators enhanced, the oxidant-mediated PARP1 activation. In the presence of cAMP, recombinant PKA directly phosphorylated recombinant PARP1 on serines 465 (in the automodification domain) and 782 and 785 (both in the catalytic domain). Inhibition of the β-adrenergic receptor/cAMP/PKA axis protected against the oxidant-mediated cell injury. Propranolol also suppressed PARP1 activation in peripheral blood leukocytes during bacterial lipopolysaccharide (LPS)-induced systemic inflammation in mice. We conclude that the activation of mitochondrial PARP1 is an early, active participant in oxidant-induced cell death, which is under the control of β-adrenoceptor/cAMP/PKA axis through the regulation of PARP1 activity by PARP1 phosphorylation.
UR - http://www.scopus.com/inward/record.url?scp=84907447200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907447200&partnerID=8YFLogxK
U2 - 10.1124/mol.114.094318
DO - 10.1124/mol.114.094318
M3 - Article
C2 - 25069723
AN - SCOPUS:84907447200
SN - 0026-895X
VL - 86
SP - 450
EP - 462
JO - Molecular pharmacology
JF - Molecular pharmacology
IS - 4
ER -