TY - JOUR
T1 - Recognition of template-primer and gapped DNA substrates by the human DNA polymerase β
AU - Rajendran, Surendran
AU - Jezewska, Maria J.
AU - Bujalowski, Wlodzimierz
N1 - Funding Information:
We thank Gloria Drennan Davis for help in preparing the manuscript. This work was supported by NIH grant GM-58565 (to W.B.).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2001/5/4
Y1 - 2001/5/4
N2 - Interactions between human DNA polymerase β and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol β binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol β)16 and (pol β)5 binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol β)16 and (pol β)5 binding modes. The affinity, as well as the stoichiometry of human pol β binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol β. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5′-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol β is discussed.
AB - Interactions between human DNA polymerase β and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol β binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol β)16 and (pol β)5 binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol β)16 and (pol β)5 binding modes. The affinity, as well as the stoichiometry of human pol β binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol β. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5′-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol β is discussed.
KW - DNA polymerase β
KW - DNA replication and repair
KW - Protein-DNA interactions
KW - Quantitative fluorescence titrations
UR - http://www.scopus.com/inward/record.url?scp=0035804927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035804927&partnerID=8YFLogxK
U2 - 10.1006/jmbi.2001.4571
DO - 10.1006/jmbi.2001.4571
M3 - Article
C2 - 11327782
AN - SCOPUS:0035804927
SN - 0022-2836
VL - 308
SP - 477
EP - 500
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 3
ER -