Reciprocal regulation of eNOS, H2S and CO-synthesizing enzymes in human atheroma: Correlation with plaque stability and effects of simvastatin

Fragiska Sigala, Panagiotis Efentakis, Dimitra Karageorgiadi, Konstadinos Filis, Paraskevas Zampas, Efstathios K. Iliodromitis, George Zografos, Andreas Papapetropoulos, Ioanna Andreadou

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


The molecular and cellular mechanisms underlying plaque destabilization remain obscure. We sought to elucidate the correlation between NO, H2S and CO-generating enzymes, nitro-oxidative stress and plaque stability in carotid arteries. Carotid atherosclerotic plaques were collected from 62 patients who had undergone endarterectomy due to internal artery stenosis. Following histological evaluation the plaques were divided into stable and unstable ones. To investigate the impact of simvastatin we divided patients with stable plaques, into those receiving and to those not receiving simvastatin. Expression and/or levels of p-eNOS/eNOS, pAkt/t-Akt, iNOS, cystathionine beta synthase (CBS), cystathionine gamma lyase (CSE), heme oxygenase-1(HO-1), soluble guanyl cyclase sGCα1, sGCβ1, NOX-4 and HIF-1α were evaluated. Oxidative stress biomarkers malondialdehyde (MDA) and nitrotyrosine (NT) were measured. NT levels were decreased in stable plaques with a concomitant increase of eNOS phosphorylation and expression and Akt activation compared to unstable lesions. An increase in HIF-1α, NOX-4, HO-1, iNOS, CBS and CSE expression was observed only in unstable plaques. 78% of patients under simvastatin were diagnosed with stable plaques whereas 23% of those not receiving simvastatin exhibited unstable plaques. Simvastatin decreased iNOS, HO-1, HIF-1α and CSE whilst it increased eNOS phosphorylation. In conclusion, enhanced eNOS and reduced iNOS and NOX-4 were observed in stable plaques; CBS and CSE positively correlated with plaque vulnerability. Simvastatin, besides its known effect on eNOS upregulation, reduced the HIF-1α and its downstream targets. The observed changes might be useful in developing biomarkers of plaque stability or could be targets for pharmacothepary against plaque vulnerability.

Original languageEnglish (US)
Pages (from-to)70-81
Number of pages12
JournalRedox Biology
StatePublished - Aug 1 2017
Externally publishedYes


  • Carotid plaques
  • Heme oxygenase-1
  • Hydrogen sulfide
  • Nitric oxide
  • Nitro-oxidative stress

ASJC Scopus subject areas

  • Organic Chemistry
  • Clinical Biochemistry


Dive into the research topics of 'Reciprocal regulation of eNOS, H2S and CO-synthesizing enzymes in human atheroma: Correlation with plaque stability and effects of simvastatin'. Together they form a unique fingerprint.

Cite this