Real-time optoacoustic monitoring during thermotherapy

Rinat Esenaliev, Irina Larina, Kirill Larin, Massoud Motamedi

Research output: Contribution to journalConference articlepeer-review

28 Scopus citations

Abstract

Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally-induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

Original languageEnglish (US)
Pages (from-to)302-310
Number of pages9
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3916
StatePublished - 2000
EventBiomedical Optoacoustics - San Jose, CA, USA
Duration: Jan 25 2000Jan 26 2000

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Real-time optoacoustic monitoring during thermotherapy'. Together they form a unique fingerprint.

Cite this