TY - JOUR
T1 - Rat polymerase β gapped DNA interactions
T2 - Antagonistic effects of the 5′ terminal PO4- group and magnesium on the enzyme binding to the gapped DNAs with different ssDNA gaps
AU - Jezewska, Maria J.
AU - Galletto, Roberto
AU - Bujalowski, Wlodzimierz
N1 - Funding Information:
This work was supported by NIH Grant GM-58565 (to W. B.). *Author to whom all correspondence and reprint requests should be addressed. E-mail: [email protected]
PY - 2003/5
Y1 - 2003/5
N2 - The role of the 5′ terminal phosphate group downstream from the primer and magnesium cations in the energetics and dynamics of the gapped DNA recognition by rat polymerase β have been examined, using the fluorescence titration and stopped-flow techniques. The analyses have been performed with the entire series of gapped DNA substrates differing in the size of the ssDNA gap. The 5′ terminal phosphate group and magnesium cations exert antagonistic effect on enzyme binding to gapped DNA that depends on the length of the ssDNA gap. The PO4- group amplifies the differences between the substrates with different ssDNA gaps, while in the presence of magnesium, affinities and structural changes induced in the DNA are very similar among examined DNA substrates. Both, the phosphate group and Mg+2 differ dramatically in affecting the thermodynamic response of the gapped DNA-rat pol β system to the salt concentration. The data indicate that these distinct effects result from affecting the structure of the DNA, in the case of the phosphate group, and from direct magnesium binding to the protein. The mechanism of rat enzyme binding depends on the length of the ssDNA gap and the presence of the 5′ terminal phosphate group. Complex formation with DNAs having three, four, and five residues in the gap occurs by a minimum three-step sequential mechanism. Depending on the presence of the 5′ terminal phosphate group and/or magnesium, binding of the enzyme to a DNA containing two residues in the ssDNA gap is described by the same three-step or by a simpler two-step mechanism. With the DNA containing only one residue in the gap, binding is always described by only a two-step mechanism. The PO4 - group and magnesium cations have opposite effects on internal stability of the complexes with different length of the ssDNA gap. While the PO4- group increases the stability of internal intermediates with the increasing length of the gap, Mg+2 decreases the stability of the intermediates with longer ssDNA gap. As a result, the combined favorable orientation effect of the phosphate group and the unfavorable Mg+2 effect lead to the optimal docking of the ssDNA gaps with three and four residues by the enzyme.
AB - The role of the 5′ terminal phosphate group downstream from the primer and magnesium cations in the energetics and dynamics of the gapped DNA recognition by rat polymerase β have been examined, using the fluorescence titration and stopped-flow techniques. The analyses have been performed with the entire series of gapped DNA substrates differing in the size of the ssDNA gap. The 5′ terminal phosphate group and magnesium cations exert antagonistic effect on enzyme binding to gapped DNA that depends on the length of the ssDNA gap. The PO4- group amplifies the differences between the substrates with different ssDNA gaps, while in the presence of magnesium, affinities and structural changes induced in the DNA are very similar among examined DNA substrates. Both, the phosphate group and Mg+2 differ dramatically in affecting the thermodynamic response of the gapped DNA-rat pol β system to the salt concentration. The data indicate that these distinct effects result from affecting the structure of the DNA, in the case of the phosphate group, and from direct magnesium binding to the protein. The mechanism of rat enzyme binding depends on the length of the ssDNA gap and the presence of the 5′ terminal phosphate group. Complex formation with DNAs having three, four, and five residues in the gap occurs by a minimum three-step sequential mechanism. Depending on the presence of the 5′ terminal phosphate group and/or magnesium, binding of the enzyme to a DNA containing two residues in the ssDNA gap is described by the same three-step or by a simpler two-step mechanism. With the DNA containing only one residue in the gap, binding is always described by only a two-step mechanism. The PO4 - group and magnesium cations have opposite effects on internal stability of the complexes with different length of the ssDNA gap. While the PO4- group increases the stability of internal intermediates with the increasing length of the gap, Mg+2 decreases the stability of the intermediates with longer ssDNA gap. As a result, the combined favorable orientation effect of the phosphate group and the unfavorable Mg+2 effect lead to the optimal docking of the ssDNA gaps with three and four residues by the enzyme.
KW - Binding modes
KW - DNA polymerases
KW - DNA repair
KW - DNA replication
KW - Fluorescence titrations
KW - Protein-DNA interactions
KW - Stopped-flow kinetics
UR - http://www.scopus.com/inward/record.url?scp=7244228547&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=7244228547&partnerID=8YFLogxK
U2 - 10.1385/CBB:38:2:125
DO - 10.1385/CBB:38:2:125
M3 - Article
C2 - 12777712
AN - SCOPUS:7244228547
SN - 1085-9195
VL - 38
SP - 125
EP - 160
JO - Cell Biochemistry and Biophysics
JF - Cell Biochemistry and Biophysics
IS - 2
ER -