TY - JOUR
T1 - Physicochemical property consensus sequences for functional analysis, design of multivalent antigens and targeted antivirals.
AU - Schein, Catherine H.
AU - Bowen, David M.
AU - Lewis, Jessica A.
AU - Choi, Kyung
AU - Paul, Aniko
AU - van der Heden van Noort, Gerbrand J.
AU - Lu, Wenzhe
AU - Filippov, Dmitri V.
N1 - Funding Information:
We thank all coworkers from the UTMB, especially David Beasley for his invaluable assistance with all the DENV work, and Werner Braun for his thoughtful input on handling bias and alternate methods of consensus sequence determination; and the Xerox team of Dr. Reiner Eschbach for microtext versions of alignments. Funding: The DENV vaccine project was supported in part by grant 1UL1RR029876-01 from the National Center for Research Resources, NIH to the Institute for Translational Studies of the UTMB, (support was to CHS and David Beasley for pilot protocols #763 and #809). Jessica A. Lewis is supported by a pre-doctoral Fellowship from the Sealy Center for Vaccine Development at the UTMB; Dr. Paul work is supported by NIH AI015122 to E. Wimmer. Kay Choi’s work is supported by NIH grant 1R01AI087856. Development of the PCP-consensus method was supported in part by NIH grant AI064913 (to Werner Braun and CHS) and EPA-STAR grant RE-83406601-0 (to CHS). D.V.F. and G.J. v.d. H. v. N. are supported by The Netherlands Organization for Scientific Research (NWO). The computational resources of the Sealy Center for Structural Biology and Molecular Biophysics were also used in this project. This article has been published as part of BMC Bioinformatics Volume 13 Supplement 13, 2012: Selected articles from The 8th Annual Biotechnology and Bioinformatics Symposium (BIOT-2011). The full contents of the supplement are available online at http://www.biomedcentral.com/1471-2105/13/S13/S1
PY - 2012
Y1 - 2012
N2 - Analysis of large sets of biological sequence data from related strains or organisms is complicated by superficial redundancy in the set, which may contain many members that are identical except at one or two positions. Thus a new method, based on deriving physicochemical property (PCP)-consensus sequences, was tested for its ability to generate reference sequences and distinguish functionally significant changes from background variability. The PCP consensus program was used to automatically derive consensus sequences starting from sequence alignments of proteins from Flaviviruses (from the Flavitrack database) and human enteroviruses, using a five dimensional set of Eigenvectors that summarize over 200 different scalar values for the PCPs of the amino acids. A PCP-consensus protein of a Dengue virus envelope protein was produced recombinantly and tested for its ability to bind antibodies to strains using ELISA. PCP-consensus sequences of the flavivirus family could be used to classify them into five discrete groups and distinguish areas of the envelope proteins that correlate with host specificity and disease type. A multivalent Dengue virus antigen was designed and shown to bind antibodies against all four DENV types. A consensus enteroviral VPg protein had the same distinctive high pKa as wild type proteins and was recognized by two different polymerases. The process for deriving PCP-consensus sequences for any group of aligned similar sequences, has been validated for sequences with up to 50% diversity. Ongoing projects have shown that the method identifies residues that significantly alter PCPs at a given position, and might thus cause changes in function or immunogenicity. Other potential applications include deriving target proteins for drug design and diagnostic kits.
AB - Analysis of large sets of biological sequence data from related strains or organisms is complicated by superficial redundancy in the set, which may contain many members that are identical except at one or two positions. Thus a new method, based on deriving physicochemical property (PCP)-consensus sequences, was tested for its ability to generate reference sequences and distinguish functionally significant changes from background variability. The PCP consensus program was used to automatically derive consensus sequences starting from sequence alignments of proteins from Flaviviruses (from the Flavitrack database) and human enteroviruses, using a five dimensional set of Eigenvectors that summarize over 200 different scalar values for the PCPs of the amino acids. A PCP-consensus protein of a Dengue virus envelope protein was produced recombinantly and tested for its ability to bind antibodies to strains using ELISA. PCP-consensus sequences of the flavivirus family could be used to classify them into five discrete groups and distinguish areas of the envelope proteins that correlate with host specificity and disease type. A multivalent Dengue virus antigen was designed and shown to bind antibodies against all four DENV types. A consensus enteroviral VPg protein had the same distinctive high pKa as wild type proteins and was recognized by two different polymerases. The process for deriving PCP-consensus sequences for any group of aligned similar sequences, has been validated for sequences with up to 50% diversity. Ongoing projects have shown that the method identifies residues that significantly alter PCPs at a given position, and might thus cause changes in function or immunogenicity. Other potential applications include deriving target proteins for drug design and diagnostic kits.
UR - http://www.scopus.com/inward/record.url?scp=84877618995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877618995&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-13-S13-S9
DO - 10.1186/1471-2105-13-S13-S9
M3 - Article
C2 - 23320474
AN - SCOPUS:84877618995
SN - 1574-7891
VL - 13 Suppl 13
SP - S9
JO - Unknown Journal
JF - Unknown Journal
M1 - S9
ER -