TY - JOUR
T1 - Parallel measurement of Ca2+ binding and fluorescence emission upon Ca2+ titration of recombinant skeletal muscle troponin C
T2 - Measurement of sequential calcium binding to the regulatory sites
AU - De Valencia, Fernando Fortes
AU - Paulucci, Adriana Aparecida
AU - Quaggio, Ronaldo Bento
AU - Da Silva, Ana Cláudia Rasera
AU - Farah, Chuck S.
AU - De Castro Reinach, Fernando
PY - 2003/3/28
Y1 - 2003/3/28
N2 - Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca2+ affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca2+ titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca2+ binding to the two N-terminal Ca2+ binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca2+ binding data showed that the Asp → Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp → Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp → Ala mutation at position 30 eliminates the differences in Ca2+ affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca2+ binding to site I is dependent on the previous binding of metal to site II.
AB - Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca2+ affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca2+ titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca2+ binding to the two N-terminal Ca2+ binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca2+ binding data showed that the Asp → Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp → Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp → Ala mutation at position 30 eliminates the differences in Ca2+ affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca2+ binding to site I is dependent on the previous binding of metal to site II.
UR - http://www.scopus.com/inward/record.url?scp=0037687338&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037687338&partnerID=8YFLogxK
U2 - 10.1074/jbc.M209943200
DO - 10.1074/jbc.M209943200
M3 - Article
C2 - 12531902
AN - SCOPUS:0037687338
SN - 0021-9258
VL - 278
SP - 11007
EP - 11014
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 13
ER -