TY - JOUR
T1 - Occam’s broom and the dirty DSB
T2 - cytogenetic perspectives on cellular response to changes in track structure and ionization density
AU - Cornforth, Michael N.
N1 - Publisher Copyright:
© Copyright © 2020 Taylor & Francis Group LLC.
PY - 2021
Y1 - 2021
N2 - Given equal doses, it is well-known that densely ionizing radiations are more potent in causing a number of biological effects compared to sparsely ionizing radiations, such as x- or gamma rays. According to classical models of radiation action, this results from differences in the spatial distribution of lesions along charged particle tracks. In recent years investigators have been barraged with the alternative narrative that this is instead due to ‘qualitative’ differences in the types of molecular lesions that each type of radiation produces. The present review discusses, mainly from a cytogenetic perspective, the merits and shortcomings of these seemingly contradictory viewpoints. There may be a kernel of truth to the idea that qualitative differences in the types of molecular lesions produced at the nanometer level affect RBE/LET relationships, but to ignore the fact that such differences result from longer-range spatial distributions of lesions produced along charged particle tracks is an unjustifiably narrow stance tantamount to employing Occam’s Broom. Not only are such spatial considerations indispensable in explaining the impact of ionization density upon higher-order biological endpoints, particularly chromosome aberrations, the explanations they provide render arguments based principally on the quality of IR damage largely superfluous.
AB - Given equal doses, it is well-known that densely ionizing radiations are more potent in causing a number of biological effects compared to sparsely ionizing radiations, such as x- or gamma rays. According to classical models of radiation action, this results from differences in the spatial distribution of lesions along charged particle tracks. In recent years investigators have been barraged with the alternative narrative that this is instead due to ‘qualitative’ differences in the types of molecular lesions that each type of radiation produces. The present review discusses, mainly from a cytogenetic perspective, the merits and shortcomings of these seemingly contradictory viewpoints. There may be a kernel of truth to the idea that qualitative differences in the types of molecular lesions produced at the nanometer level affect RBE/LET relationships, but to ignore the fact that such differences result from longer-range spatial distributions of lesions produced along charged particle tracks is an unjustifiably narrow stance tantamount to employing Occam’s Broom. Not only are such spatial considerations indispensable in explaining the impact of ionization density upon higher-order biological endpoints, particularly chromosome aberrations, the explanations they provide render arguments based principally on the quality of IR damage largely superfluous.
KW - LET
KW - RBE
KW - chromosome aberrations
KW - clustered damage
KW - micrometer-scale damage
UR - http://www.scopus.com/inward/record.url?scp=85078407108&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078407108&partnerID=8YFLogxK
U2 - 10.1080/09553002.2019.1704302
DO - 10.1080/09553002.2019.1704302
M3 - Article
C2 - 31971454
AN - SCOPUS:85078407108
SN - 0955-3002
VL - 97
SP - 1099
EP - 1108
JO - International Journal of Radiation Biology
JF - International Journal of Radiation Biology
IS - 8
ER -