Nucleosome positioning by human Alu elements in chromatin

Ella W. Englander, Bruce H. Howard

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

Alu sequences are interspersed throughout the genomes of primate cells, occurring singly and in clusters around RNA polymerase II-transcribed genes. Because these repeat elements are capable of positioning nucleosomes in in vitro reconstitutes (Englander, E. W. Wolffe, A. P. and Howard, B. H. (1993) J. Biol. Chem. 268, 1956519573), we investigated whether they also influence in vivo chromatin structure. When assayed collectively using consensus sequence probes and native chromatin as template, Alu family members were found to confer rotational positioning on nucleosomes or nucleosome-like particles. In particular, a 10-base pair pattern of DNase I nicking that spanned the RNA polymerase III box A promoter motif extended upstream to cover diverse 5'-flanking sequences, suggesting that Alu repeats may influence patterns of nucleosome formation over neighboring regions. Computational analysis of a set of naturally occurring Alu sequences indicated that nucleosome positioning information is intrinsic to these elements. Inasmuch as local chromatin organization influences gene expression, the capacity of Alu sequences to affect chromatin structure as demonstrated here may help to clarify some features of these elements.

Original languageEnglish (US)
Pages (from-to)10091-10096
Number of pages6
JournalJournal of Biological Chemistry
Volume270
Issue number17
DOIs
StatePublished - Apr 28 1995
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Nucleosome positioning by human Alu elements in chromatin'. Together they form a unique fingerprint.

Cite this