TY - JOUR
T1 - New method of sudomotor function measurement to detect microvascular disease and sweat gland nerve or unmyelinated C fiber dysfunction in adults with retinopathy
AU - Lewis, John E.
AU - Atlas, Steven E.
AU - Rasul, Ammar
AU - Farooqi, Ashar
AU - Lantigua, Laura
AU - Higuera, Oscar L.
AU - Fiallo, Andrea
AU - Laria, Lianette
AU - Picciani, Renata
AU - Wals, Ken
AU - Yehoshua, Zohar
AU - Mendez, Armando
AU - Konefal, Janet
AU - Goldberg, Sharon
AU - Woolger, Judi
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/6/12
Y1 - 2017/6/12
N2 - Background: Diabetes-associated microvascular complications such as retinopathy and neuropathy often lead to end-organ and tissue damage. Impaired skin microcirculation often precedes the detection of other advanced diabetic complications. The ANS-1 system contains a redesigned sympathetic skin response (ANS-1 SSR) device that measures sudomotor function, a photoplethysmography sensor, and a blood pressure device to comprehensively assess cardiac autonomic neuropathy and endothelial dysfunction. The purpose of this study was to determine the relationships between the ANS-1 SSR amplitude measured at the: (a) negative electrode (Nitric Oxide [NO] Sweat Peak) with microvascular diseases and associated vascular blood markers and (b) positive electrode (iSweat Peak) with C fiber function. Methods: All participants (healthy controls n = 50 and retinopathy patients n = 50) completed the ANS-1 system evaluation and a basic sociodemographic and medical history questionnaire, including a quality of life measure (SF-36). A small sample of blood was drawn to determine levels of homocysteine, blood urea nitrogen (BUN), C-reactive protein (CRP), and fibrinogen. Symptoms of peripheral foot neuropathy were assessed with a scale from 1 (none) to 10 (the worst). We used Spearman rank correlations, independent samples t-tests, and receiver operating characteristic curves to determine the specificity and sensitivity of the NO Sweat Peak as a potential screening marker of retinopathy. Results: The ANS-1 System Cardiometabolic Risk Score and all indicators of quality of life on the SF-36, other than Emotional Role Functioning, were significantly worse in the retinopathy patients. The sudomotor response marker NO Sweat Peak had a sensitivity of 88% and a specificity of 68% (Area Under the Curve = 0.81, p < 0.0001) to detect retinopathy. The NO Sweat Peak response marker inversely correlated with BUN (ρ = -0.41, p < 0.0001), homocysteine (ρ = -0.44, p < 0.0001), fibrinogen (ρ = -0.41, p < 0.0001), the Cardiac Autonomic Neuropathy score (ρ = -0.68, p < 0.0001), and the heart rate variability Total Power (ρ = -0.57, p < 0.0001), and it positively correlated with the Photoplethysmography Index (PTGi; ρ = 0.53 p < 0.0001). The ANS-1 system sudomotor response marker iSweat Peak inversely correlated with the severity of symptoms on the peripheral neuropathy scale (ρ = -0.56, p < 0.0001). Conclusion: The results of the study show that this new method of measuring sympathetic skin response should be useful for detecting the earliest manifestations of microvascular disease and symptoms of C fiber dysfunction.
AB - Background: Diabetes-associated microvascular complications such as retinopathy and neuropathy often lead to end-organ and tissue damage. Impaired skin microcirculation often precedes the detection of other advanced diabetic complications. The ANS-1 system contains a redesigned sympathetic skin response (ANS-1 SSR) device that measures sudomotor function, a photoplethysmography sensor, and a blood pressure device to comprehensively assess cardiac autonomic neuropathy and endothelial dysfunction. The purpose of this study was to determine the relationships between the ANS-1 SSR amplitude measured at the: (a) negative electrode (Nitric Oxide [NO] Sweat Peak) with microvascular diseases and associated vascular blood markers and (b) positive electrode (iSweat Peak) with C fiber function. Methods: All participants (healthy controls n = 50 and retinopathy patients n = 50) completed the ANS-1 system evaluation and a basic sociodemographic and medical history questionnaire, including a quality of life measure (SF-36). A small sample of blood was drawn to determine levels of homocysteine, blood urea nitrogen (BUN), C-reactive protein (CRP), and fibrinogen. Symptoms of peripheral foot neuropathy were assessed with a scale from 1 (none) to 10 (the worst). We used Spearman rank correlations, independent samples t-tests, and receiver operating characteristic curves to determine the specificity and sensitivity of the NO Sweat Peak as a potential screening marker of retinopathy. Results: The ANS-1 System Cardiometabolic Risk Score and all indicators of quality of life on the SF-36, other than Emotional Role Functioning, were significantly worse in the retinopathy patients. The sudomotor response marker NO Sweat Peak had a sensitivity of 88% and a specificity of 68% (Area Under the Curve = 0.81, p < 0.0001) to detect retinopathy. The NO Sweat Peak response marker inversely correlated with BUN (ρ = -0.41, p < 0.0001), homocysteine (ρ = -0.44, p < 0.0001), fibrinogen (ρ = -0.41, p < 0.0001), the Cardiac Autonomic Neuropathy score (ρ = -0.68, p < 0.0001), and the heart rate variability Total Power (ρ = -0.57, p < 0.0001), and it positively correlated with the Photoplethysmography Index (PTGi; ρ = 0.53 p < 0.0001). The ANS-1 system sudomotor response marker iSweat Peak inversely correlated with the severity of symptoms on the peripheral neuropathy scale (ρ = -0.56, p < 0.0001). Conclusion: The results of the study show that this new method of measuring sympathetic skin response should be useful for detecting the earliest manifestations of microvascular disease and symptoms of C fiber dysfunction.
KW - ANS-1
KW - C fiber dysfunction
KW - Diabetes complications
KW - ISweat Peak
KW - Microvascular diseases
KW - NO Sweat Peak
KW - Retinopathy
KW - Sudomotor test
UR - http://www.scopus.com/inward/record.url?scp=85020481463&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020481463&partnerID=8YFLogxK
U2 - 10.1186/s40200-017-0307-5
DO - 10.1186/s40200-017-0307-5
M3 - Article
AN - SCOPUS:85020481463
SN - 2251-6581
VL - 16
JO - Journal of Diabetes and Metabolic Disorders
JF - Journal of Diabetes and Metabolic Disorders
IS - 1
M1 - 26
ER -