Abstract
Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-β signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-β should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-β promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-β signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-β and resultantly IFN-stimulated genes. nc886′ s role might be to restrict the IFN-β signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.
Original language | English (US) |
---|---|
Article number | 2003 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | International journal of molecular sciences |
Volume | 22 |
Issue number | 4 |
DOIs | |
State | Published - Feb 2 2021 |
Keywords
- Interferon
- Interferon Regulatory Factor 3
- Nc886
- Pathogen
- Protein Kinase R
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry