TY - JOUR
T1 - Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest
AU - Huang, Gengming
AU - Elferink, Cornelis J.
PY - 2005/1
Y1 - 2005/1
N2 - The liver is the only solid organ that can respond to major tissue loss or damage by regeneration to restore liver biomass. The aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can disrupt the regenerative process, as evidenced by suppression of DNA synthesis in rat primary hepatocytes in culture and in vivo liver regeneration after partial hepatectomy. Independent observations demonstrated that AhR-mediated G 1 phase cell cycle arrest depends on an interaction with the retinoblastoma tumor suppressor protein (pRb), but differences exist regarding proposed mechanisms of action. Two distinct models have been proposed, one supporting the AhR-pRb interaction functioning in corepression of E2F activity and the other favoring an AhR-pRb interaction participating in transcriptional coactivation of genes encoding G1 phase regulatory proteins. In the present study, experiments in rat hepatoma cells using dominant-negative DNA-binding-defective AhR and Ah receptor nuclear translocator (Arnt) mutants provided evidence that TCDD-induced AhR-mediated G1 arrest is only partially regulated by direct AhR transcriptional activity, suggesting that both coactivation and corepression are involved. Studies using a small interfering RNA to down-regulate Arnt protein expression revealed that TCDD-induced G 1 arrest is absolutely dependent on the Arnt protein.
AB - The liver is the only solid organ that can respond to major tissue loss or damage by regeneration to restore liver biomass. The aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can disrupt the regenerative process, as evidenced by suppression of DNA synthesis in rat primary hepatocytes in culture and in vivo liver regeneration after partial hepatectomy. Independent observations demonstrated that AhR-mediated G 1 phase cell cycle arrest depends on an interaction with the retinoblastoma tumor suppressor protein (pRb), but differences exist regarding proposed mechanisms of action. Two distinct models have been proposed, one supporting the AhR-pRb interaction functioning in corepression of E2F activity and the other favoring an AhR-pRb interaction participating in transcriptional coactivation of genes encoding G1 phase regulatory proteins. In the present study, experiments in rat hepatoma cells using dominant-negative DNA-binding-defective AhR and Ah receptor nuclear translocator (Arnt) mutants provided evidence that TCDD-induced AhR-mediated G1 arrest is only partially regulated by direct AhR transcriptional activity, suggesting that both coactivation and corepression are involved. Studies using a small interfering RNA to down-regulate Arnt protein expression revealed that TCDD-induced G 1 arrest is absolutely dependent on the Arnt protein.
UR - http://www.scopus.com/inward/record.url?scp=11244353490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11244353490&partnerID=8YFLogxK
U2 - 10.1124/mol.104.002410
DO - 10.1124/mol.104.002410
M3 - Article
C2 - 15492120
AN - SCOPUS:11244353490
SN - 0026-895X
VL - 67
SP - 88
EP - 96
JO - Molecular pharmacology
JF - Molecular pharmacology
IS - 1
ER -