Abstract
Significance: Early detection of epithelial cancers and precancers/neoplasia in the presence of benign lesions is challenging due to the lack of robust in vivo imaging and biopsy guidance techniques. Label-free nonlinear optical microscopy (NLOM) has shown promise for optical biopsy through the detection of cellular and extracellular signatures of neoplasia. Although in vivo microscopy techniques continue to be developed, the surface area imaged in microscopy is limited by the field of view. FDA-approved widefield fluorescence (WF) imaging systems that capture autofluorescence signatures of neoplasia provide molecular information at large fields of view, which may complement the cytologic and architectural information provided by NLOM. Aim: A multimodal imaging approach with high-sensitivity WF and high-resolution NLOM was investigated to identify and distinguish image-based features of neoplasia from normal and benign lesions. Approach: In vivo label-free WF imaging and NLOM was performed in preclinical hamster models of oral neoplasia and inflammation. Analyses of WF imaging, NLOM imaging, and dual modality (WF combined with NLOM) were performed. Results: WF imaging showed increased red-to-green autofluorescence ratio in neoplasia compared to inflammation and normal oral mucosa (p < 0.01). In vivo assessment of the mucosal tissue with NLOM revealed subsurface cytologic (nuclear pleomorphism) and architectural (remodeling of extracellular matrix) atypia in histologically confirmed neoplastic tissue, which were not observed in inflammation or normal mucosa. Univariate and multivariate statistical analysis of macroscopic and microscopic image-based features indicated improved performance (94% sensitivity and 97% specificity) of a multiscale approach over WF alone, even in the presence of benign lesions (inflammation), a common confounding factor in diagnostics. Conclusions: A multimodal imaging approach integrating strengths from WF and NLOM may be beneficial in identifying oral neoplasia. Our study could guide future studies on human oral neoplasia to further evaluate merits and limitations of multimodal workflows and inform the development of multiscale clinical imaging systems.
Original language | English (US) |
---|---|
Article number | 116008 |
Journal | Journal of Biomedical Optics |
Volume | 25 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2020 |
Keywords
- cancer detection
- inflammation
- multimodal imaging
- nonlinear optical microscopy
- oral cancer
- widefield fluorescence
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- Biomaterials