Abstract
Functional imaging of clear and tissue-simulating phantoms using phase-resolved swept-source spectroscopic OCT (PhS-SSOCT) is described. Superior sensitivity of PhS-SSOCT technique to monitor ultra-small changes in sample refractive index is demonstrated using aqueous solutions of glucose and aqueous suspensions of polystyrene microspheres and glucose. Glucose-induced changes in the phase are found to be 0.039 rad/mM and 0.037 rad/mM in the 200 μm-thick cell for clear and turbid media, respectively, that is in good agreement with our previous data obtained using differential-phase time-domain OCT. Obtained results suggest that PhS-SSOCT has a potential for noninvasive, depth-resolved, real-time quantitative monitoring of concentrations of glucose and other analytes with high accuracy.
Original language | English (US) |
---|---|
Article number | 70 |
Pages (from-to) | 422-425 |
Number of pages | 4 |
Journal | Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
Volume | 5690 |
DOIs | |
State | Published - 2005 |
Event | Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX - San Jose, CA, United States Duration: Jan 23 2005 → Jan 26 2005 |
Keywords
- OCT
- Phase measurements
- Swept-source
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Radiology Nuclear Medicine and imaging
- Biomaterials