TY - JOUR
T1 - Metabolism and anti-human immunodeficiency virus-1 activity of 2-halo-2',3'-dideoxyadenosine derivatives
AU - Haertle, T.
AU - Carrera, C. J.
AU - Wasson, D. B.
AU - Sowers, L. C.
AU - Richman, D. D.
AU - Carson, D. A.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1988
Y1 - 1988
N2 - Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 μM), the 2-halo-2',3'-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.
AB - Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 μM), the 2-halo-2',3'-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0023926115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023926115&partnerID=8YFLogxK
M3 - Article
C2 - 3258602
AN - SCOPUS:0023926115
SN - 0021-9258
VL - 263
SP - 5870
EP - 5875
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 12
ER -