Luminal influences on potassium secretion: Sodium concentration and fluid flow rate

D. W. Good, F. S. Wright

Research output: Contribution to journalArticlepeer-review

163 Scopus citations

Abstract

Two methods of in vivo continuous microperfusion were used to evaluate separately luminal sodium concentration and fluid flow rate as factors regulating potassium secretion by the renal distal tubule of the rat. Emphasis was placed on evaluating changes in sodium concentration (43-97 mM) and flow rate (4-27 nl/min) within the physiological range. Absolute rates of Na, K, Cl, and H2O transport were measured. Results showed that increasing early distal flow rate without increasing early distal Na concentration significantly increased the absolute rate of potassium secretion by the distal tubule. In contrast, increasing early distal Na concentration, distal Na delivery, and distal Na absorption did not affect potassium secretion if flow rate was not changed. Further studies showed that reducing early distal Na concentration below the physiological range (to 15 mM) caused the direction of net sodium transport to be reversed but did not significantly reduce potassium secretion. Increasing early distal K concentration (to 34 mM) caused the direction of net potassium transport to be reversed. The rate of potassium secretion appears to depend in part on the luminal potassium concentration. Increases in luminal flow rate may increase the rate of potassium secretion by lowering the luminal K concentration.

Original languageEnglish (US)
Pages (from-to)F192-F205
JournalAmerican Journal of Physiology - Renal Fluid and Electrolyte Physiology
Volume5
Issue number2
DOIs
StatePublished - 1979
Externally publishedYes

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'Luminal influences on potassium secretion: Sodium concentration and fluid flow rate'. Together they form a unique fingerprint.

Cite this