ISG15 deficiency and increased viral resistance in humans but not mice

Scott D. Speer, Zhi Li, Sofija Buta, Béatrice Payelle-Brogard, Li Qian, Frederic Vigant, Erminia Rubino, Thomas J. Gardner, Tim Wedeking, Mark Hermann, James Duehr, Ozden Sanal, Ilhan Tezcan, Nahal Mansouri, Payam Tabarsi, Davood Mansouri, Véronique Francois-Newton, Coralie F. Daussy, Marisela R. Rodriguez, Deborah J. LenschowAlexander N. Freiberg, Domenico Tortorella, Jacob Piehler, Benhur Lee, Adolfo García-Sastre, Sandra Pellegrini, Dusan Bogunovic

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

ISG15 is an interferon (IFN)-α/β-induced ubiquitin-like protein. It exists as a free molecule, intracellularly and extracellularly, and conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human ISG15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular ISG15 is crucial in IFN-I 3-dependent antimycobacterial immunity, while free intracellular ISG15 is crucial for USP18-mediated downregulation of IFN-α/β signalling. Here we describe ISG15-deficient patients who display no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from ISG15-deficient patients display enhanced antiviral protection, and expression of ISG15 attenuates viral resistance to WT control levels. The species-specific gain-of-function in antiviral immunity observed in ISG15 deficiency is explained by the requirement of ISG15 to sustain USP18 levels in humans, a mechanism not operating in mice.

Original languageEnglish (US)
Article number11496
JournalNature communications
Volume7
DOIs
StatePublished - May 19 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'ISG15 deficiency and increased viral resistance in humans but not mice'. Together they form a unique fingerprint.

Cite this