TY - JOUR
T1 - In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration
AU - Geng, Hua
AU - Bu, Heng Fu
AU - Liu, Fangyi
AU - Wu, Longtao
AU - Pfeifer, Karl
AU - Chou, Pauline M.
AU - Wang, Xiao
AU - Sun, Jiaren
AU - Lu, Lu
AU - Pandey, Ashutosh
AU - Bartolomei, Marisa S.
AU - De Plaen, Isabelle G.
AU - Wang, Peng
AU - Yu, Jindan
AU - Qian, Jiaming
AU - Tan, Xiao Di
N1 - Publisher Copyright:
© 2018 AGA Institute
PY - 2018/7
Y1 - 2018/7
N2 - Background & Aims: Inflammation affects regeneration of the intestinal epithelia; long noncoding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. Methods: We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)–induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. Results: In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found that levels of H19 lncRNA changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced and polymicrobial sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin 22 (IL22) increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19ΔEx1/+ mice proliferated more slowly than those from control mice after exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium. Conclusions: The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration.
AB - Background & Aims: Inflammation affects regeneration of the intestinal epithelia; long noncoding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. Methods: We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)–induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. Results: In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found that levels of H19 lncRNA changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced and polymicrobial sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA expression. Exposure of IECs to interleukin 22 (IL22) increased levels of H19 lncRNA with time and dose, which required STAT3 and protein kinase A activity. IL22 induced expression of H19 in mouse intestinal epithelial organoids within 6 hours. Exposure to IL22 increased growth of intestinal epithelial organoids derived from control mice, but not H19ΔEx1/+ mice. Overexpression of H19 in HT-29 cells increased their proliferation. Intestinal mucosa healed more slowly after withdrawal of DSS from H19ΔEx1/+ mice vs control mice. Crypt epithelial cells from H19ΔEx1/+ mice proliferated more slowly than those from control mice after exposure to LPS. H19 lncRNA bound to p53 and microRNAs that inhibit cell proliferation, including microRNA 34a and let-7; H19 lncRNA binding blocked their function, leading to increased expression of genes that promote regeneration of the epithelium. Conclusions: The level of lncRNA H19 is increased in inflamed intestinal tissues from mice and patients. The inflammatory cytokine IL22 induces expression of H19 in IECs, which is required for intestinal epithelial proliferation and mucosal healing. H19 lncRNA appears to inhibit p53 protein and microRNA 34a and let-7 to promote proliferation of IECs and epithelial regeneration.
KW - Gene Regulation
KW - Mouse Model
KW - Tissue Repair
KW - Ulcerative Colitis
UR - http://www.scopus.com/inward/record.url?scp=85049351534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049351534&partnerID=8YFLogxK
U2 - 10.1053/j.gastro.2018.03.058
DO - 10.1053/j.gastro.2018.03.058
M3 - Article
C2 - 29621481
AN - SCOPUS:85049351534
SN - 0016-5085
VL - 155
SP - 144
EP - 155
JO - Gastroenterology
JF - Gastroenterology
IS - 1
ER -