TY - JOUR
T1 - Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes
AU - Zhang, Ling
AU - Yang, Guangdong
AU - Untereiner, Ashley
AU - Ju, Youngjun
AU - Wu, Lingyun
AU - Wang, Rui
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Mounting evidence has established hydrogen sulfide (H2S) as an important gasotransmitter with multifaceted physiological functions. The aim of the present study was to investigate the role of H2S on glucose utilization, glycogen synthesis, as well as gluconeogenesis in both HepG 2 cells and primary mouse hepatocytes. Incubation with NaHS (a H 2S donor) impaired glucose uptake and glycogen storage in HepG 2 cells via decreasing glucokinase activity. Adenovirus-mediated cystathionine γ-lyase (CSE) overexpression increased endogenous H 2S production and lowered glycogen content in HepG2 cells. Glycogen content was significantly higher in liver tissues from CSE knockout (KO) mice compared to that from wild type (WT) mice in fed condition. Glucose consumption was less in primarily cultured hepatocytes isolated from WT mice than those from CSE KO mice, but more glucose was produced by hepatocytes via gluconeogenesis and glycogenolysis pathways in WT mice than in CSE KO mice. NaHS treatment reduced the phosphorylation of AMP-activated protein kinase, whereas stimulation of AMP-activated protein kinase by 5-aminoimidazole-4-car-boxamide- 1-β-d-ribofuranoside reversed H2S-impaired glucose uptake. H2S-increased glucose production was likely through increased phosphoenolpyruvate carboxykinase activity. In addition, insulin at the physiological range inhibited CSE expression, and H2S decreased insulin-stimulated phosphorylation of Akt in HepG2 cells. CSE expression was increased, however, in insulin-resistant state induced by exposing cells to high levels of insulin (500 nM) and glucose (33 mM) for 24 h. Taken together, these data suggest that the interaction of H2S and insulin in liver plays a pivotal role in regulating insulin sensitivity and glucose metabolism.
AB - Mounting evidence has established hydrogen sulfide (H2S) as an important gasotransmitter with multifaceted physiological functions. The aim of the present study was to investigate the role of H2S on glucose utilization, glycogen synthesis, as well as gluconeogenesis in both HepG 2 cells and primary mouse hepatocytes. Incubation with NaHS (a H 2S donor) impaired glucose uptake and glycogen storage in HepG 2 cells via decreasing glucokinase activity. Adenovirus-mediated cystathionine γ-lyase (CSE) overexpression increased endogenous H 2S production and lowered glycogen content in HepG2 cells. Glycogen content was significantly higher in liver tissues from CSE knockout (KO) mice compared to that from wild type (WT) mice in fed condition. Glucose consumption was less in primarily cultured hepatocytes isolated from WT mice than those from CSE KO mice, but more glucose was produced by hepatocytes via gluconeogenesis and glycogenolysis pathways in WT mice than in CSE KO mice. NaHS treatment reduced the phosphorylation of AMP-activated protein kinase, whereas stimulation of AMP-activated protein kinase by 5-aminoimidazole-4-car-boxamide- 1-β-d-ribofuranoside reversed H2S-impaired glucose uptake. H2S-increased glucose production was likely through increased phosphoenolpyruvate carboxykinase activity. In addition, insulin at the physiological range inhibited CSE expression, and H2S decreased insulin-stimulated phosphorylation of Akt in HepG2 cells. CSE expression was increased, however, in insulin-resistant state induced by exposing cells to high levels of insulin (500 nM) and glucose (33 mM) for 24 h. Taken together, these data suggest that the interaction of H2S and insulin in liver plays a pivotal role in regulating insulin sensitivity and glucose metabolism.
UR - http://www.scopus.com/inward/record.url?scp=84871696249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871696249&partnerID=8YFLogxK
U2 - 10.1210/en.2012-1658
DO - 10.1210/en.2012-1658
M3 - Article
C2 - 23183179
AN - SCOPUS:84871696249
SN - 0013-7227
VL - 154
SP - 114
EP - 126
JO - Endocrinology
JF - Endocrinology
IS - 1
ER -