Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are instrumental to improving our understanding of virus–host interactions in cell culture infection studies and complex biological systems because they allow separating the transcriptional signatures of infected versus non-infected bystander cells. A drawback of using biosafety level (BSL) 4 pathogens is that protocols are typically developed without consideration of virus inactivation during the procedure. To ensure complete inactivation of virus-containing samples for downstream analyses, an adaptation of the workflow is needed. Focusing on a commercially available microfluidic partitioning scRNA-seq platform to prepare samples for scRNA-seq, we tested various chemical and physical components of the platform for their ability to inactivate Nipah virus (NiV), a BSL-4 pathogen that belongs to the group of nonsegmented negative-sense RNA viruses. The only step of the standard protocol that led to NiV inactivation was a 5 min incubation at 85 °C. To comply with the more stringent biosafety requirements for BSL-4-derived samples, we included an additional heat step after cDNA synthesis. This step alone was sufficient to inactivate NiV-containing samples, adding to the necessary inactivation redundancy. Importantly, the additional heat step did not affect sample quality or downstream scRNA-seq results.
Original language | English (US) |
---|---|
Article number | 62 |
Journal | Pathogens |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2024 |
Externally published | Yes |
Keywords
- 10x Genomics
- BSL-4 pathogens
- Nipah virus
- VSV
- heat inactivation
- iPSC-derived alveolar type 2 cells
- nonsegmented negative sense RNA viruses
- scRNA-seq
- single-cell RNA sequencing
ASJC Scopus subject areas
- Immunology and Allergy
- Molecular Biology
- General Immunology and Microbiology
- Microbiology (medical)
- Infectious Diseases